Characterization of Bacteriocin like Inhibitory Substances from Enterococcus ratti MF183967

Ayesha Riaz¹, Saleha Noureen¹, Muhammad Fiaz Qamar², Iram Liaqat³, Muhammad Arshad⁴ and Najma Arshad⁵

¹Department of Zoology, University of the Punjab, Quaid-i-Azam Campus, Lahore-54590, Pakistan
²University of Veterinary and Animal Sciences, Jhang, Pakistan; ³Government College University, Lahore
⁴University of the Education, Lower Mall Campus, Lahore- Pakistan
⁵Corresponding author: najmaarshad@gmail.com; najmaarshad.zool@pu.edu.pk

ABSTRACT

This study was designed to characterize one Lactic acid bacteria (LAB), Enterococcus ratti showing admirable antimicrobial potential. Out of 54 LAB strains isolated from herbivores, cell free supernatant (CFS) of one strain E. ratti was active against wide range of pathogens including Methicillin resistant Staphylococcus aureus (MRSA), Bacillus cereus, Clostridium perfringens, Listeria monocytogenes, Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Klebsiella pneumoniae and Proteus mirabilis. PCR amplification of enterocin genes indicated presence of entL50 A and entP. Time kill assay of foodborne pathogens in the presence of CFS further confirmed its bactericidal property. The antimicrobial component was stable at a wide range of pH (4-10) and temperature (4-100°C). The loss of activity with proteinase k and pepsin treatment indicated its proteinaceous nature. SDS-PAGE analysis confirmed production of short peptides of 20 and 30KDa. Bioautography revealed 20kDa fraction was active against MRSA. Scanning Electron Micrograph further indicated that its bactericidal action involves damage to the cell wall. Our findings suggest safe nature of E. ratti MF183967 for consumer health.

INTRODUCTION

Foodborne and food spoilage bacteria are a major threat to the industry (Bitrus et al., 2016). Different methods including heating, refrigeration, salting, drying and synthetic chemicals are used to preserve food from spoilage bacteria and extend their shelf life (Galvez et al., 2007). These methods of preservation have several drawbacks and limitations including change in nutritional quality and taste of food (Pereira and Vicente, 2010). Furthermore, the use of chemical preservatives has not been much appreciated due to their undesirable effects. Biopreservation is an alternative tool of increasing the shelf life of food items by using microorganisms and their metabolites (García et al., 2010).

Lactic acid bacteria (LAB) are potential candidate to be used for this purpose since these are known to produce antimicrobial metabolites such as lactic acid, acetic acid, ethanol, formic acid, fatty acids, hydrogen peroxide, diacetyl, exopolysaccharides, reuterin, reutericyclin, organic acids, bacteriocin and other enzymes (Cálix-Lara et al., 2014). Some bacteriocins from LAB, such as nisin and pediocin, are currently used at commercial scale with variable success (Cheng et al., 2018).

Lactic acid bacteria (LAB) are cosmopolitan and possess strong broad spectrum antimicrobial activity, however their efficacy is strain and source specific. Extensive data is available on LAB from fermented food and dairy products, however, GIT tract is less explored site. GIT tract is a potential source of probiotic bacteria as they line the intestinal lumen and protect it from attachment of pathogenic bacteria, inhibit their growth and provide health benefits to the host (Yu et al., 2015; Carvalho et al., 2017). The current study was planned to characterize Enterococcus ratti, one of our field strain of LAB that displays excellent broad spectrum antimicrobial activity.

MATERIALS AND METHODS

Bacterial strains: The study was conducted on Enterococcus ratti MF183967 that was selected from a collection of 54 LAB isolates from herbivores on the basis of admirable broad spectrum antimicrobial activity during...
initial screening process. *Enterococcus ratti* MF183967 was identified on the basis of biochemical characteristics including gram staining, catalase, oxidase, spore formation and motility along with 16S rRNA gene sequencing. The strain was assigned accession number MF183967 from NCBI-BLAST. *Bacillus cereus*, *MRSA (KY698020)*, *Clostridium perfringens*, *Listeria monocytogenes ATCC 19115*, *Escherichia coli ATCC 8739*, *Salmonella enteritidis*, *Pseudomonas aeruginosa*, *Proteus mirabilis* and *Klebsiella pneumoniae* were used as indicator strains.

Detection of bacteriocin structural genes: Genomic DNA from *E. ratti* was extracted using Qiagen Kit and PCR amplification of the 8 most frequently reported enterocin structural genes was done using specific primers (Table 1). The amplified products were analyzed using gel electrophoresis on 1.5% agarose gel.

Safety assessment of strain: Gelatinase, Catalase, Dnase Coagulase and hemolytic activity tests were performed (Martin et al., 2006). The antibiotic resistance profile of *E. ratti* was determined following CLSI standards.

Preparation of cell free supernatant (CFS): *E. ratti* was grown in MRS broth at 150rpm, at 37°C for 48 hours and centrifuged at 10,000rpm for 15min at 4°C to obtain CFS. CFS was neutralized by adjusting its pH at 7±0.02 and sterilized by passing through 0.22μm membrane filter.

Characterization of Cell Free Supernatant (CFS)

a). Inhibitory activity of CFS: Inhibitory activity of CFS was evaluated against indicator pathogens using Agar Well Diffusion Assay (AWDA).

b). Growth Kinetics of Foodborne pathogens with CFS: Pair of glass flasks containing 50ml of nutrient broth was inoculated with 2% of each foodborne pathogen culture (adjusted at OD 1.0±0.2 = 10⁶ CFU/ml) and incubated at 37°C. At exponential phase (3 hours), CFS was added (20% v/v) to one of each pair of flasks. Equal volume of preautoclaved CFS was added to the control flask. Aliquots were taken from each flask and growth was measured at 600nm.

c). Effect of different temperatures and pH on CFS: CFS was incubated at range of temperatures (4-121 °C) for 15min and pH (2-11), later on activity was monitored by AWDA.

d). Effect of different enzymes and surfactant on antimicrobial potential of CFS: CFS was treated with different enzymes such as Protease K, α-amylase, lipase and pepsin at a final concentration of 1mg/ml and incubated for 2 hours at 37°C. Later on, it was heated at 100°C to stop reaction. The effect of surfactant was analyzed by adding EDTA, SDS, Tween 80 and tritont X100 in CFS at a final concentration of 1% and activity was analyzed by AWDA.

Table 1: List of primers used in the study

<table>
<thead>
<tr>
<th>Gene</th>
<th>F/R</th>
<th>Primer sequence</th>
<th>Product Size (bp)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ent Q</td>
<td>F</td>
<td>GGA ATA AGA GTA GTG GAA TAC TGA ATG AG C</td>
<td>653</td>
<td>(De Vuyst et al., 2003)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>AAA GAC TGC TCT TCG GAG CAC GG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ent A</td>
<td>F</td>
<td>GAG ATT TAT CTC CAT AAT CT</td>
<td>542</td>
<td>(Aymerich et al., 1996)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>GTA CCA CTC ATA GTG GAA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ent B</td>
<td>F</td>
<td>GAA AAT GAT CAG ACA ATG CTT A</td>
<td>159</td>
<td>(Toit et al., 2000)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>GTT GCA TTT AGA GTA TAC ATT TG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ent P</td>
<td>F</td>
<td>ATG AGA AAA ASA TTA TTT AGT TT</td>
<td>216</td>
<td>(Gutiérrez et al., 2005)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>TTA ATG TCC TAC ACC TGC CAA ACC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ent LS0A</td>
<td>F</td>
<td>CCA TGG GAG CAA TCG CAA AA</td>
<td>135</td>
<td>(Batdorj et al., 2006)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>AAG CTT AAT GTT TTT TAA TCC ACT CAA T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ent LS0B</td>
<td>F</td>
<td>ATG GGA GCA ATC GCA AAA TTA</td>
<td>252</td>
<td>(Cintas et al., 1998)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>TAG CCA TTT TTC AAT TTT ATC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ent 3I</td>
<td>F</td>
<td>CCT AGC TAT TAC GGA AAT GGT</td>
<td>130</td>
<td>(De Vuyst et al., 2003)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>GCC ATG TTG TAC CCA ACC ATT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ent AS4B</td>
<td>F</td>
<td>GAG GAG TAT CAT GGT TAA AGA</td>
<td>339</td>
<td>(De Vuyst et al., 2003)</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>ATA TTG TTA AAT TAC CAA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: The antibiotic resistance profile of *Enterococcus ratti*

<table>
<thead>
<tr>
<th>Sr.#</th>
<th>Antibiotics</th>
<th>Abbrev.</th>
<th>Conc. (µg)</th>
<th>Suscep.</th>
<th>Zone (mm)</th>
<th>CLSI Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methicillin</td>
<td>MET</td>
<td>5</td>
<td>S</td>
<td>≥14</td>
<td>10-13</td>
</tr>
<tr>
<td>2</td>
<td>Penicillin G</td>
<td>P</td>
<td>10</td>
<td>R</td>
<td>≥15</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Chloramphenicol</td>
<td>C</td>
<td>30</td>
<td>R</td>
<td>≥18</td>
<td>13-17</td>
</tr>
<tr>
<td>4</td>
<td>Streptomycin</td>
<td>S</td>
<td>10</td>
<td>S</td>
<td>≥23</td>
<td>19-22</td>
</tr>
<tr>
<td>5</td>
<td>Linzolid</td>
<td>LNZ</td>
<td>10</td>
<td>R</td>
<td>≥20</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Oxacillin</td>
<td>OX</td>
<td>01</td>
<td>R</td>
<td>≥20</td>
<td>15-18</td>
</tr>
<tr>
<td>7</td>
<td>Tetracycline</td>
<td>TE</td>
<td>30</td>
<td>R</td>
<td>≥23</td>
<td>14-22</td>
</tr>
<tr>
<td>8</td>
<td>Erythromycin</td>
<td>E</td>
<td>15</td>
<td>R</td>
<td>≥23</td>
<td>14-22</td>
</tr>
<tr>
<td>9</td>
<td>Vancomycin</td>
<td>VA</td>
<td>30</td>
<td>S</td>
<td>≥17</td>
<td>15-16</td>
</tr>
<tr>
<td>10</td>
<td>Sulbactam</td>
<td>SAM</td>
<td>20</td>
<td>R</td>
<td>≥15</td>
<td>12-14</td>
</tr>
<tr>
<td>11</td>
<td>Cefoxime</td>
<td>CFXM</td>
<td>5</td>
<td>R</td>
<td>≥19</td>
<td>16-18</td>
</tr>
<tr>
<td>12</td>
<td>Clindamycin</td>
<td>DA</td>
<td>2</td>
<td>R</td>
<td>≥21</td>
<td>15-20</td>
</tr>
<tr>
<td>13</td>
<td>Gentamicin</td>
<td>CN</td>
<td>10</td>
<td>S</td>
<td>≥10</td>
<td>7-9</td>
</tr>
<tr>
<td>14</td>
<td>Sulphamethoxazole</td>
<td>SXT</td>
<td>25</td>
<td>R</td>
<td>≥16</td>
<td>11-15</td>
</tr>
<tr>
<td>15</td>
<td>Furazolidone</td>
<td>FR</td>
<td>15</td>
<td>R</td>
<td>≥15</td>
<td>15-16</td>
</tr>
<tr>
<td>16</td>
<td>Clarithromycin</td>
<td>CLR</td>
<td>15</td>
<td>R</td>
<td>≥18</td>
<td>14-22</td>
</tr>
</tbody>
</table>

Abbreviation; µg Concentration; Suscep. Susceptibility; The level of susceptibility to various antibiotics was recorded as resistant (R), intermediate (I) or sensitive (S) according to the Clinical and Laboratory Standards Institute (CLSI) standards (Wayne, 2009).
Partial purification of BLIS by Ammonium Sulphate Precipitation: CFS was subjected to 80% ammonium sulphate precipitation with constant stirring at 4°C. The resulting precipitate was centrifuged at 10,000 rpm for 15min at 4°C and pellet was resuspended in 1 ml of 20mM sodium phosphate buffer (pH 6). Dialysis membrane of 10KDa cut-off was used to desalt the suspension using sodium phosphate buffer with overnight constant stirring at 4°C. Resulting solution was designated as BLIS.

Microdilution assay: Inhibitory activity of BLIS was analyzed by microtiter plate assay and expressed as arbitrary units (AU/ml).

Molecular size determination: BLIS was analyzed for presence of protein by performing Tricine-SDS-PAGE. After electrophoresis, gel was divided in two parts, one part was stained with Coomassie Brilliant Blue R-250, and other part was fixed in 25% Isopropanol and 10% acetic acid for 1 hour. Then it was subjected to bioautography with 10⁶ CFU of the MRSA and examined for zone of inhibition (Barboza-Corona et al., 2007).

Scanning Electron Microscope (SEM) analysis: The MRSA cells (2x10⁶cells/ml) were incubated with 200µg/ml of BLIS for 4 hours at 37°C and examined under SEM (Pattanayaiying et al., 2014).

Statistical analysis: The experimental data was analyzed using one way ANOVA.

RESULTS

In current study, antimicrobial metabolite from one of our LAB isolate E. ratti was characterized due to its broad spectrum antagonistic activity against clinical and food spoilage bacteria. The strain was Gram positive cocci (0.8-2.2µm), negative for catalase, oxidase, spore formation and motility, facultative anaerobe and didn’t show any hemolysis on sheep blood agar. It could tolerate the temperature of 45°C, 6.2 pH and 2% NaCl concentration. The strain was confirmed by 16s RNA sequencing up to species level. Result of 16s RNA sequencing lead to conclusion that the strain was Enterococcus ratti (accession no: MF183967). DNA of E. ratti was tested for the presence of 8 frequently reported bacteriocin encoding genes. Under optimized PCR condition with all primers pair resulted in amplification of two fragments generating length of 216 and 135bp indicating the presence of entP and entL50A genes in our strain (Fig. 1).

Safety assessment of strain showed negative results for catalase, gelatinase, Dnase, coagulase and oxidase. Further it was non-hemolytic indicating its safe nature. Antimicrobial profile of strain as verified by CLSI standards indicated that it was sensitive to Gentamycin, Methicillin, Streptomycin and Vancomycin resistant to Penicillin G, Chloramphenicol, Linezolid, Oxacillin, Tetracycline, Erythromycin, Sulbactam, Cefixime, Clindamycin, Sulphamethoxazole, Furazolidone, Clarithromycin (Table 2).

Cell free supernatant of E. ratti was tested for its antimicrobial potential against clinical and foodborne pathogenic strains (S. enteritidis, E. coli ATCC 8739, C. perfringens and L. monocytogenes ATCC 19115). The target strains displayed variable zone of inhibition (ZI). CFS showed highest inhibition against MRSA and lowest activity against P. aeruginosa (Fig. 2). In general, Gram positive strains exhibited higher ZI as compared to Gram negative. Likewise, pronounced inhibition in growth curves of foodborne pathogens was observed. Overall, 2.5 fold reduction in S. enteritidis, 3 fold in C. perfringens, 2.4 fold reductions in E. coli and 5 fold in L. monocytogenes, thus confirming the inhibitory potential of CFS (Fig. 3). One interesting aspect was complete elimination of log phase of pathogenic strains following addition of (20% v/v) CFS of E. ratti.
Fig. 3: Growth inhibition of foodborne pathogens in the presence of 20% (v/v) CFS. A: *Salmonella enteritidis* B: *Clostridium perfringens* C: *Escherichia coli* and D: *Listeria monocytogenes* in the absence of CFS (↓) and presence of CFS (↑). 1ml of fresh culture of each target strain was adjusted to OD 1±0.02 corresponding to 10⁷ CFU/ml used in the study.

Fig. 4: Effect of different enzymes on the stability of BLIS

Experiments on chemical nature of CFS indicated the proteinaceous nature of antimicrobial metabolite since its inhibitory activity vanished when it was treated with protinase K and pepsin but remained stable after treatment with α-amylase and lipase (Fig. 4). Stability of antimicrobial metabolite in CFS was determined at different pH and temperatures. Our results showed that antagonistic activity of CFS remains stable at pH (2-10) and temperatures (4-100°C). Among surfactants, SDS and EDTA showed no effect on activity of CFS in our study.

Keeping in mind chemical nature of active metabolite on CFS, it was subjected to ammonium sulphate precipitation. The protein fraction was tested against four strains using microdilution method. The highest reciprocal units of MIC was noticed against MRSA (10240 AU/ml) followed by *E. coli* (3200 AU/ml), *L. monocytogenes* ATCC 19115 (2560 AU/ml), *S. enteritidis* (1280 AU/ml), and *Clostridium perfringens* (640 AU/ml). Owing to inhibitory effect of the protein fraction of *E. ratti* towards above mentioned pathogens, it was named as bacteriocin like inhibitory substance (BLIS). Just like CFS, BLIS was also more active against Gram positive compared to Gram negative bacteria.

In order to identify the active fraction in the BLIS, it was subjected to SDS-PAGE electrophoresis followed by overlay assay. Two proteins of molecular weight of 30 and 20 KDa were observed on the gel. The fraction of 20KDa inhibited the growth of MRSA (Fig. 5). SEM analysis was performed to check the mode of action of BLIS. It was observed that BLIS (200µg/ml) cause roughening and disintegration of cell wall of target cell (Fig. 6).

DISCUSSION

Foodborne pathogens contaminate food and cause detrimental health issues which may lead to mortality. Among food borne pathogens, *L. monocytogenes*, *E. coli*, *C. perfringens* and *S. aureus* are some of the most important pathogens which are responsible for gastroenteritis, abortion, urinary tract infection, meningitis, fatal septicemia and food poisoning in human (Sánchez-Maldonado et al., 2018). Food preservation industry has been practicing different physical, chemical and biological strategies for supplementation of standard preserved food. However, emergence of resistance in pathogens and adverse effect of chemical preservatives has directed researchers to
search safer and novel antimicrobials from natural resources. LAB may offer a relief in this scenario. They are known for their probiotic nature and are recognized for production of diverse type of antimicrobial peptides/bacteriocins which may be utilized in food industry. While several studies have focused on purification and characterization of bacteriocin like inhibitory substance (BLIS) from other enterococci viz., *E. faecium* and *E. faecalis* (Jaouani et al., 2014) but to the best of our knowledge, BLIS from *E. ratti* has not been studied so far.

Generally, LAB show the narrow spectrum of antagonistic activity and inhibit only closely related species. Furthermore, their bacteriocin production, spectrum and amounts are also strain specific. However, the activity of CFS from *E. ratti* MF183967 isolated and identified in this study was apparently superior as it could reduce the growth of both gram positive and negative antibiotic resistant bacteria of clinical and food spoilage origin. The type of bacteriocin could be presumed by identifying specific structural genes. The investigation of bacteriocin structural genes revealed presence of two genes *entP* and *ent L50A*. These genes code for class II of enterocin which are reported to have greater antilisterial activity (Franz et al., 2011). These results are similar to other studies who reported other bacteriocin producing genes in LAB from many resources (Jia et al., 2017; Borrero et al., 2018).

Safety assessment of probiotic strains is considered mandatory for their application in pharmaceutical and food industry. In this study, absence of hemolytic behavior and sensitivity to Methicillin, Vancomycin and Streptomycin was noticed in *E. ratti* suggesting inoffensive nature of our isolate. However, the strain was found to possess antibiotic resistance against other common antibiotics which make its use controversial. Therefore, we decided to characterize the active component for its application in food industry.

CFS is routinely used to primarily screen the antimicrobial capacity of LAB by well diffusion method. Moreover, CFS may contain many molecules, besides those secreted by bacteria i.e., medium components and/or intracellular compounds which may be accidentally released during CFS preparation (Al Kassaa et al., 2014). The secretion of antimicrobial metabolites of *E. ratti* was confirmed when CFS was used against clinical and food borne pathogens in agar well diffusion assay and zones of inhibition were noticed against target strains. The greater ZI was recorded against Gram positive compared to gram negative, which might be due to absence of lipopolysaccharide membrane in gram positive strains (Chen et al., 2014). Growth kinetic assay of pathogens in the presence of neutralized CFS resulted in complete elimination of log phase of pathogens culminating the complete inhibitory nature of active component in CFS.

Next objective was to find out the nature of the active component, for which, CFS was subjected to different physical and chemical treatments viz: temperature, pH, enzymes and surfactants. Treatment with enzymes indicated proteinaceous nature of the active component. Further experiments including monitoring effect of pH and temperature on CSF as well as exposure to surfactant indicated its stable nature. Our data is in agreement with (Hadji-Sfaksi et al., 2011) who reported that bacteriocins

Fig. 5: Inhibitory activity of BLIS on SDS PAGE gel. Gel was divided in two halves. One half was overlaid with *S. aureus* containing 0.2% molten agar. In the lane 1 peptide band of 20KDa showed zone of inhibition against *Staphylococcus aureus*. Lane 2 & 3 show protein band on SDS gel stained with Coomassie Brilliant Blue dye Lane 4 showed standard protein marker for comparison.

Fig. 6: Bactericidal effect of BLIS on *Staphylococcus aureus*. Scanning electron micrographs of A. Control: Red arrows represent the intact cell surface of *S. aureus*, B. Treated: arrows represent surface roughening and the cell debris accumulation of *S. aureus* cells.
are thermostable peptides which resist 121°C and remain active at a wide range of pH. Interestingly, CFS from *E. ratti*, remained active up to 100°C, but degraded at 121°C. Industries may have different approach towards application of LAB or their bacteriocins, therefore, an effort was made to purify and identify the active fraction in CFS produced by *E. ratti*. SDS-PAGE analysis of precipitated proteinaceous component revealed two bands having molecular weight of 20 and 30KDa, of which only 20KDa fraction was confirmed to possess active antimicrobial activity. Previously, Goh and Philip (2015) reported the production of a bacteriocin, BacC1 of 10KDa form *E. faecium* C1 through autodigestion on SDS-PAGE gel. Different mass of active protein fraction was observed in this study. It might be an indication of different types of peptides in CFS of *E. ratti*.

The final objective was to find the mode of action of BLIS using MRSA as model organism. Bacteriocins can kill target strains by either acting on their cell wall, cell membrane or by interfering with metabolic processes (Alvarez-Sieiro et al., 2016). Keeping this in mind, bacterial cell wall integrity was measured as an indicator of cell lysis. SEM analysis of BLIS treated target strain revealed that its antagonistic effect involves lysis of cell wall. Laterosporulin, a bacteriocin from *Brevibacillus* sp. has also been reported to act on cell wall of the target strain (Singh et al., 2012).

Previous studies suggest that several bacteriocin have been associated with *Enterococcus* genus (Gao et al., 2016; Ogaki et al., 2016). However, studies of BLIS production from *E. ratti* remain insufficient. To our knowledge this is the first study of BLIS from *E. ratti* which showed inhibitory activity against pathogenic and food spoilage bacteria. The compounds secreted by *E. ratti* could be used to control food spoilage bacteria. However, N-terminal amino acid sequencing of the active peptide is recommended.

Authors contribution: AR and NA designed the study plan, carried out all experiments and wrote the manuscript. SN helped in experiments and acquisition of data and its analysis. NA supervised the experiments and helped in data analysis and manuscript writing. MFQ, IL and MA helped in interpretation of analyzed data and revising manuscript critically for important intellectual contents. All authors read and approved the manuscript in final version before submission.

Acknowledgements: We acknowledge Higher Education Commission (HEC) Pakistan for providing financial support vide letter # 112-25549-2BMI-570(50022668) to complete research work of MS Ayesha Riaz. Facilities for experimental work was provided by Department of Zoology, University of the Punjab Lahore, Pakistan.

REFERENCES

