Molecular Typing of Brucella abortus Strains Isolated from Cattle in Different Districts of Pakistan Based on Bruce-Ladder-PCR and MLVA-16 Assays

Shahzad Ali1*, Shamim Akhter2, Iahtasham Khan3, Haroon Ahmed4, Abdul Maalik1, Heinrich Neubauer5, Falk Melzer5 and Hosny El-Adawy5,6

1Wildlife Epidemiology and Molecular Microbiology Laboratory (One Health Research Group), Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan; 2Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan; 3Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan; 4Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Park Road, Chakl Shahzad, Islamabad, Pakistan; 5Institute of Bacterial Infection and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany; 6Faculty of Veterinary Medicine, Kafrelsheikh University, Kafir El-Sheikh, 35516, Egypt

*Corresponding author: shahzad.ali@uvas.edu.pk

ARTICLE HISTORY (18-410)
Received: October 21, 2018
Revised: November 25, 2018
Accepted: November 26, 2018
Published online: January 24, 2019

Key words:
Bovine
Brucellosis
Genotyping
Punjab

ABSTRACT

Bovine brucellosis is endemic in Pakistan. But little is known about the prevalent Brucella species and biovars. We have performed molecular typing of 17 Brucella isolates from cattle by Bruce-Ladder-PCR and Multiple-Locus Variable number tandem repeat Analysis (MLVA)-16 genotyping. These Brucella isolates were recovered from aborted fetuses, milk samples and vaginal swabs from recently aborted cattle in different districts in Pakistan. All isolates were confirmed by conventional culture methods and PCR. All strains had identical MLVA-16 profiles. Results of this study concluded that the same genotype of B. abortus is circulating in different districts of Pakistan which considered as the main risk of spread of this infection in Pakistan. This data will be helpful to develop prevention and control strategies for human and bovine brucellosis in Pakistan.

INTRODUCTION

Brucellosis is a major zoonotic disease of humans, livestock and wildlife worldwide. This disease is responsible for significant economic losses in terms of morbidity and mortalities in farm animals (Ali et al., 2015; Ali et al., 2016; Ali et al., 2018). Currently, the genus Brucella (B.) has 12 species, which are differentiated into various biovars/biotypes (Scholz and Vergnaud, 2013). The division of Brucella species was commonly done on the basis of their host preferences and pathogenicity. In humans and small ruminants B. melitensis is identified as the main causative agent of brucellosis. B. abortus and B. suis cause bovine and swine brucellosis, respectively. But cross species infections are reported for various Brucella species for environments where different livestock species share the same resources (Weiner et al., 2011). Various techniques are used for the identification and characterization of Brucella isolates from human and animal origin. Historically, identification and typing of Brucella isolates requires culture and physical and biochemical tests. However, PCR based techniques are safe, quick and easy to perform. Moreover, genotyping using PCR helps us to determine phylogenetic and geographic association of zoonotic agents like B. abortus. Although, brucellosis is endemic in Pakistani cattle’s no information is available about genetic diversity of prevalent Brucella spp. The aim of the present study was to use Bruce-ladder and MLVA-16 genotyping assays for confirmation and to identify genetic variations in B. abortus isolates from cattle of different districts of Pakistan.

MATERIALS AND METHODS

Isolation of Brucella isolates: Brucella abortus isolates were isolated from serologically positive milk samples, vaginal swabs and aborted foetuses collected from cattle having a recent abortion history in different regions of the Potohar Plateau, Pakistan (Table 1). Modified Farrell’s serum dextrose agar was used for isolation of Brucella. Suspected colonies were identified according to standard procedures by modified Ziehl-Neelsen staining and biochemically (Alton et al., 1988).
Extraction of DNA: Extraction of DNA from Brucella colonies was done using the High Pure PCR Template Preparation Kit (Roche Diagnostics®, Mannheim, Germany) and stored at −20°C for further analysis.

PCR-Bruce Ladder and MLVA-16 Assays: Genotyping of Brucella isolates was performed using Bruce-ladder PCR assays and MLVA-16 assays. The Bruce-ladder PCR was performed using eight pairs of primers for a multiplex PCR assay and PCR products were analyzed by gel electrophoresis (Garcia-Yoldi et al., 2006). MLVA-16 assays were performed using 16 pairs of primers and data were analyzed as described earlier (Le-Fleche et al., 2006).

RESULTS AND DISCUSSION

All 17 Brucella isolates were phenotyped as B. abortus biovar 1. These isolates were isolated from aborted foetuses (n=6), vaginal swabs (n=6) and milk samples (n=5). The isolates were confirmed by Bruce-Ladder PCR as B. abortus as shown in Fig. 1. Bovine brucellosis caused by B. abortus is an important zoonotic disease with a great economic impact. In Pakistan no control or eradication programs are in place and no specialized laboratories are available to perform sophisticated phenotyping of Brucella isolates. PCR based methods can reduce the risk of laboratory infection and are useful tools in epidemiology to identify links. These techniques have also the potential to be implemented in diagnostic laboratories in Pakistan. Commonly, B. abortus is prevalent in case of brucellosis in bovines, B. melitensis and B. suis have also been identified as the causative agents in regions where bovines have close contact to goats and sheep or pigs, respectively (Liu et al., 2012; Fretin et al., 2013). Cohabitation of bovines and small ruminants is common in Pakistan. Under these conditions, the use of multiplex PCR is very important for differentiation of Brucella at species level. A new Bruce-ladder multiplex PCR assay was introduced for diagnosis of B. abortus (biovar 1, 2 or 4) and all biovars of B. melitensis, B. suis and B. ovis biovar 1 and to differentiate between vaccine strains S99 and RB51 of B. abortus (Lopez-Goni et al., 2011). In the present study, all isolates could be confirmed genetically as B. abortus based on Bruce-Ladder PCR, which is in accordance to previous findings from other countries i.e. India and Tanzania (Nagalingam et al., 2012; Mathew et al., 2015). Brucella abortus isolates have been isolated from Pakistanis cattle and buffaloes and phenotyped previously (Ali et al., 2014).

Fig. 1: Bruce-Ladder PCR results for Brucella isolates from Pakistan. Line M=100-bp mark; Line 1-10= DNA of B. abortus isolates from Pakistan; Line 11-12 and 15= B. suis; line 13=B. melitensis 16 M as positive control; Line 14= B. abortus BA544 as positive control; Line 16= B. canis; Line 17 negative control.

Fig. 2: Dendrogram showing relationships between the 17 B. abortus biovar 1 isolates from cattle in Pakistan and other Brucella spp. isolated from neighboring countries.
In the present study, the phylogenetic relationship of 17 *B. abortus* biovar1 isolates was assessed with MLVA-16. All had the same genotype (Fig. 2). This genotype was also previously isolated from a buffalo in India (Fig. 2). On the basis of genetically similarity of 17 *B. abortus* biovar 1 isolates of Pakistan with Indian isolates, it could be assumed that the source of brucellosis infection in Pakistani cattle is the same as previously reported in India. The phylogenetic relationship of local isolates of *B. abortus* was investigated successfully using MLVA genotyping which is a prove of the effectiveness of this genotyping method as a useful tool to trace back infection in the setting of Pakistan. The genotype found was different to that of *B. abortus* and *B. melitensis* isolates from different countries (http://microbesgenotyping.12bc. paris-saclay.fr/) (Fig. 2). MLVA genotyping was used to characterize *Brucella* spp. isolated from animals and humans in China and South Korea (Jiang et al., 2011; Kang et al., 2011) and various genotypes were found in each country. However, in the present study, only one single genotype of *B. abortus* (biovar1) was identified as the causative agent of brucellosis in cattle pointing to the fact that a single introduction event or single source led to the spread of brucellosis in the study area. Possible reason for the lack of genetic diversity found may be use of an inadequate vaccine strain, import of an infected exotic or cross breed cattle being the index case or sampling bias (e.g. animals belonging to the same production unit). Next generation sequencing (NGS) has higher resolution power than MLVA and might be helpful in this setting.

Conclusions

This study provides the first evidence that only one genotype of *B. abortus* is circulating in Pakistani cattle of the Pothohar district. Topographically the study area is different from others parts of Pakistan and our findings might be only a local phenomenon. A detailed study including various sampling areas within the country with representative numbers of *Brucella* isolates is now mandatory.

Funding: We gratefully acknowledge the financial support by the “Higher Education Commission, Pakistan.

Acknowledgements: The authors thank Dr. Gernot Schmoock at Friedrich-Loeffler-Institut, Jena, Germany for his help in MLVA phylogenetic tree formulation. The authors thank Federal Foreign Office, Germany “German Bioscience Programme” for their support to achieve this work.

Authors contribution: SA, ShA and IK conceived and designed the study. SA and IK performed the study and analyzed the data. AM, SA, FM, HN, HE and HA wrote the article. SA, ShA, IK, HA, FM, HN, HE and AM proofread the manuscript and approved final version.

REFERENCES

