SHORT COMMUNICATION

ECONOMIC LOSSES DUE TO SLAUGHTERING OF PREGNANT BUFFALOES AT PESHAWAR ABATTOIR

Hamidullah, Saadullah Jan, Usman Ghani 1, Muhammad Ijaz Ali 2 and Naveed Akhtar 3

Veterinary Research and Diagnostic Laboratory, Kohat,
1 Sarhad Rural Support Corporation Kohat,
2 Veterinary Research Institute, Peshawar,
3 Barani Agriculture Research Station, Kohat, Pakistan

ABSTRACT

This study was aimed to know the economic losses due to pregnant buffaloes slaughtered at Peshawar abattoir. A total of 250 buffalo reproductive tracts were collected from slaughter house throughout the week and studied at V.R.I, Peshawar. The frequency of pregnancies among slaughtered buffaloes were 24.50 percent of which 47.54 percent were left sided, 44.26 percent right sided and 8.20 percent unidentified. Annually, 3172 pregnant buffaloes would be expected slaughtered. Considering the minimum milk yield per buffalo per lactation to be 1742 litre. The annual milk loss due of 3172 pregnant buffaloes being slaughtered, would be 5.54 million litres in addition of milk loss and a crop of more than 3000 replacements is lost every year. The slaughtering of pregnant buffaloes leading to huge economic losses could be avoided by enforcing the rules and regularly conducting antemortem examination before slaughtering.

INTRODUCTION

Buffalo is said to be the black gold. More than half of the world population is found in Pakistan and India (Cockril, 1981). The buffalo population of Pakistan constitute 10.4% of the total world buffalo population. Milk yield ranges 1400 to 2200 litres per lactation. While exceptionally good animals could produce upto 4400 litres of milk per lactation (Shah, 1991). With regard to quality of milk, no domestic animal approaches it in fat contents which varies from 6 to 9% (Mudalilar, 1958) with a maximum of 13% (Hafez, 1952). A significant proportion of buffaloes which are slaughtered for meat were usually pregnant (Khan et al., 1987). El-Wishy et al, (1988) analyzed data on 1902 multiparous slaughtered buffaloes and found to be 7.7% pregnant. This proportion has been increased from 7% in 1987 to 11.54% in 1989 (Khan and Khan, 1989). This is not only unethical and violation of invogue slaughtering rules but also could adversely affect the milk and meat production potentials of the country and great economic loss to the nation. The present study describes the frequency of pregnancies and economic losses occurring due to slaughtering of pregnant buffaloes at Peshawar abattoir.

MATERIALS AND METHODS

Reproductive organs of 250 buffaloes were obtained from slaughter house, Peshawar during August/September, 1992. Approximately 50 buffaloes were slaughtered daily. The reproductive organs were collected and brought to VRI, Peshawar for examination. Reproductive tract of each animal was spread out on table and examined for stage of pregnancy. Frequency percentage was calculated.

RESULTS AND DISCUSSION

Every fourth buffalo slaughtered at Peshawar abattoir was found pregnant (Table 1). The distribution of pregnancies in buffaloes in the present study was 47.54% on the left side, 44.26% on right side and 8.20% could not be specified. The frequency observed was higher than 7% pregnancies reported by Khan et al. (1987) and 11.65% reported by Khan and Khan (1989) among slaughtered buffaloes at abattoir Faisalabad. Al-Dahash and Devid (1977) found 23.36% of pregnant buffaloes slaughtered at Bristol abattoir. Khan and Khan (1989) reported 51.11% pregnancies on the right side and 48.88% on the left side.

The economic losses due to slaughtering of pregnant buffaloes were estimated. About 50 buffaloes were slaughtered daily with 24.4 percent buffaloes being pregnant. Annually, 3172 pregnant buffaloes would be slaughtered. The minimum milk yield per buffalo per lactation could be considered to be 1742 litres (Shah, 1991). The annual milk loss due to 3172 pregnant buffaloes slaughtered amounts to be 5.546 million litres. In addition to milk loss, a crop of more than 3000 replacements is also lost each year.
Table 1: Frequency of pregnant buffaloes slaughtered at Peshawar abattoir.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
</tr>
<tr>
<td>Non-Pregnant</td>
<td>189</td>
</tr>
<tr>
<td>Pregnant</td>
<td>61</td>
</tr>
<tr>
<td>Left horn</td>
<td>29</td>
</tr>
<tr>
<td>Right horn</td>
<td>27</td>
</tr>
<tr>
<td>Un-identified</td>
<td>5</td>
</tr>
</tbody>
</table>

* = Percentage was calculated amongst 61 pregnant buffaloes.

Cady et al. (1983) found 11.2 percent of lactating buffaloes in Pakistan with one or more records greater than plus 2 standard deviation in milk yield. In this study, approximately 1.2 percent of all buffaloes produced more than 4000 kg of milk per lactation. Assuming that buffaloes are slaughtered after random selection among dried buffaloes, approximately 1.2 percent of the buffaloes slaughtered would have superior genetics. In other words, nearly 38 buffaloes which could be considered as bull dams in buffalo breeding programme are slaughtered at Peshawar abattoir every year. Because higher production is associated with higher genetic variability (Van Vlech, 1962), the indiscriminate slaughtering of buffaloes, especially pregnant buffaloes, is narrowing the genetic variation thus diminishing the opportunity of selecting superior breeding stock and amount of possible genetic progress through selection.

REFERENCES


