SEMEN CHARACTERISTICS OF SAHIWAL BULLS IN RELATION TO AGE AND SEASON

Ahmad, M., M.T. Asmat, N.U. Rehman and M.Z. Khan

Department of Animal Reproduction and 1Department of Veterinary Pathology,
University of Agriculture, Faisalabad

ABSTRACT

This study was undertaken to investigate the effects of age and season on the semen quality of 21 Sahiwal bulls kept under similar managerial conditions at the Semen Production Unit, Qadirabad, District Sahiwal. These bulls were divided into 3 age groups i.e. group-I (upto 3 years), group-II (3-5 years) and group-III (above five years). Semen from experimental bulls was collected weekly and evaluated for physical characteristics including ejaculatory volume, mass activity, motility percentage, pH, sperm concentration, post-thaw motility and the number of doses produced per ejaculate. Depending on the photoperiod, months of the year were grouped into 4 seasons i.e. Winter (November, December, January), Spring (February, March, April), Summer (May, June, July) and Autumn (August, September, October). The results indicated that ejaculatory volume, motility percentage and doses produced by bulls of group-II were significantly higher (P<0.05) than that of bulls of group I and III. However, mass activity, sperm concentration, pH and post thaw motility differed non significantly among bulls of three age groups. Generally all bulls showed better performance during Spring than other seasons of the year. It may be concluded that semen collected from mature bulls (adult bulls) is of better quality than the semen of young and old bulls and also in Spring the quality of semen is better than the other seasons of the year.

Key words: Sahiwal bulls, semen characteristics, age, season.

INTRODUCTION

Semen quality and quantity of breeding bulls is influenced by several non-genetic factors including age of the bulls and season of the year. Semen quality improves with increasing age of bulls (Barbosa et al., 1991). High ambient temperature during Summer adversely affects testicular size, libido and semen quality (Soderquist et al., 1996). Similarly, epididymal spermatozoa are adversely affected by elevated testicular temperature, resulting in a decreased ability of spermatozoa to maintain motility and acrosomal integrity after freezing (Vogler et al., 1991).

In Pakistan, research work on semen production of Sahiwal bulls with respect to age and season has been done in segments, yet comprehensive information about the influence of these and other factors on semen production/quality in Sahiwal bulls is lacking. The present study was, therefore, carried out to investigate semen quality in different seasons and age groups of Sahiwal bulls maintained at the Semen Production Unit, Qadirabad, District Sahiwal.

MATERIALS AND METHODS

Animals

A total of 21 adult bulls of Sahiwal breed with clinically normal reproductive tract and maintained under similar managerial conditions at the Semen Production Unit, Qadirabad, District Sahiwal were used in this study. These bulls were divided equally into three age groups i.e. group-I (upto 3 years of age), group-II (3-5 years of age) and group-III (above 5 years of age).

In order to determine the effect of season on various seminal attributes, months, of the year were grouped into four seasons based on the photoperiodicity i.e. Winter (November, December, January), Spring (February, March, April), Summer (May, June, July) and Autumn (August, September, October).

Semen collection and processing

Semen from experimental bulls was collected once a week with the help of an artificial vagina, using an intact bull as a teaser. Two ejaculates per animal were collected on each collection day. Immediately after
collection, each ejaculate was kept at 37°C and evaluated for physical characteristics including ejaculatory volume, mass activity, motility percentage, pH and sperm concentration, following the method described by Settergen (1967). Semen samples were diluted at 37°C by slow and one step dilution method, and the straw method of freezing was adopted, as described by Ahmad et al. (1980). The frozen straws were then transferred to liquid nitrogen storage containers. For the evaluation of frozen semen, four straws of semen from each bull were thawed at 37°C for 15-20 seconds in a water bath, the semen was pooled and examined for post thaw motility. Number of doses produced by each bull was also recorded.

Statistical analysis
Mean values (± SE) were computed for various parameters of semen quality with regard to various groups. The data were subjected to analysis of variance under completely randomized design (Snedecor and Cochran, 1989). Duncan multiple range test (Duncan, 1955) was applied for multiple mean comparisons, where necessary.

RESULTS AND DISCUSSION

The effects of age and season on various seminal traits are presented in Table 1.

Ejaculatory volume
In the present study, overall mean ejaculatory volume for 21 Sahiwal bulls of 3 age groups was 4.59 ± 0.15 ml, the range was 1.5-10 ml. The bulls in the group-II had significantly higher (P<0.05) volume (4.87 ± 0.35 ml) than the bulls in group-I and group-III. The difference between the latter two groups was non significant. These results are supported by the findings of Everett and Bean (1982), who reported that semen production of bulls peaked in Spring and at 4-5 years of age. However, Fonesca et al. (1992) noted that although seasonal effects may influence semen quality but they were less important for bulls fed adequately and well adopted to high temperature. The ejaculatory volume was lower during Summer than in other seasons (Table 1).

Mass activity and motility percentage
The overall mean mass activity was 2.61 ± 0.04, the range was 0.5 to 4.5. The highest value (2.91 ± 0.04) was recorded in bulls of group-II and the lowest in group-III (2.35 ± 0.01). When the data were pooled for semen samples taken from bulls during four seasons of the year, high mass activity (3.38 ± 0.03) was recorded during Spring and low (2.05 ± 0.02) during Summer. Results revealed that season and age had non significant effect on the mass activity of the ejaculate. However, Everett and Bean (1982) reported the age related changes in semen characteristics and concluded that semen production of bulls peaked on average at 4-5 years of age.

The overall mean motility percentage of ejaculates collected from 21 Sahiwal bulls was 65.14 ± 0.21, the range was 60-75. The semen samples collected from bulls of group-I and III had lower (P<0.05) percent motility (65.25 ± 0.39 and 64.46 ± 0.25, respectively) than that of group-II (65.71 ± 0.34). The difference in motility percentage between the bulls of former two groups was non significant.

Significant seasonal effects on sperm motility percentage were observed during this study. It averaged 65.95 ± 0.39, 66.12 ± 0.25 and 64.81 ± 0.25 respectively for Autumn, Winter and Spring which differed (P<0.05) from that of Summer (63.68 ± 0.29) which agree with the results reported by Fonesca et al. (1992). However, Mathewson et al. (1998), while analyzing the semen production data from 198 bulls (young bulls up to 30 months and mature between 4 and 6 years of age), concluded that semen characteristics (volume, sperm concentration, sperm motility) improved significantly with age of young bulls. Season significantly affected selected semen traits in young bulls but did not significantly affect volume and sperm motility in mature bulls. Performance was better in Winter than in Summer.

pH and sperm concentration
Overall mean pH of semen samples collected from bulls of 3 age groups during four seasons of the year was 6.89 ± 0.03. Effect of age and season on pH was non significant. These findings are supported by those reported by Terezenha et al. (1991), who recorded non significant variations in pH of semen from bulls of young, adult and old age groups and within each age group. Bhosreker et al. (1992) reported that in bovines semen quality was better in Winter than in other seasons.

The pH of semen depends upon the sperm concentration of semen and samples with thick density have lower pH value. According to Younis (1996), the pH of semen was higher in low breeding season (6.33 ± 0.06) than during the peak breeding season (6.18 ± 0.77), probably due to higher sperm concentration noted in peak breeding season than low breeding season. The pH of semen is also closely related to mass activity and frequency of collection (Barnabé et al., 1992).
Table 1: Mean values (±SEM) of characteristics of semen collected from bulls of three age groups during various seasons of the year

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
<th>Overall mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejaculatory vol. (ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group-I</td>
<td>4.76±0.13</td>
<td>4.36±0.11</td>
<td>4.61±0.12</td>
<td>4.42±0.15</td>
<td>4.53±0.21b</td>
</tr>
<tr>
<td>Group-II</td>
<td>5.72±0.11</td>
<td>4.41±0.09</td>
<td>4.91±0.12</td>
<td>4.47±0.09</td>
<td>4.87±0.35a</td>
</tr>
<tr>
<td>Group-III</td>
<td>4.21±0.10</td>
<td>4.12±0.09</td>
<td>4.82±0.15</td>
<td>4.38±0.09</td>
<td>4.38±0.19b</td>
</tr>
<tr>
<td>Mean</td>
<td>4.89±0.22A</td>
<td>4.26±0.26B</td>
<td>4.78±0.17A</td>
<td>4.42±0.10A</td>
<td>4.59±0.15</td>
</tr>
<tr>
<td>Mass activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group-I</td>
<td>3.47±0.05</td>
<td>2.13±0.04</td>
<td>2.45±0.04</td>
<td>2.33±0.06</td>
<td>2.59±0.03a</td>
</tr>
<tr>
<td>Group-II</td>
<td>3.70±0.04</td>
<td>2.30±0.03</td>
<td>2.57±0.04</td>
<td>3.07±0.03</td>
<td>2.91±0.04a</td>
</tr>
<tr>
<td>Group-III</td>
<td>2.97±0.04</td>
<td>1.74±0.03</td>
<td>2.40±0.05</td>
<td>2.29±0.03</td>
<td>2.35±0.01a</td>
</tr>
<tr>
<td>Mean</td>
<td>3.38±0.03A</td>
<td>2.05±0.02A</td>
<td>2.47±0.06A</td>
<td>2.56±0.07A</td>
<td>2.61±0.04A</td>
</tr>
<tr>
<td>Motility (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group-I</td>
<td>64.38±0.58</td>
<td>63.79±0.40</td>
<td>66.36±0.44</td>
<td>66.49±0.58</td>
<td>65.25±0.39b</td>
</tr>
<tr>
<td>Group-II</td>
<td>65.41±0.38</td>
<td>64.05±0.35</td>
<td>66.65±0.55</td>
<td>66.73±0.41</td>
<td>65.71±0.34a</td>
</tr>
<tr>
<td>Group-III</td>
<td>64.66±0.41</td>
<td>63.21±0.34</td>
<td>64.66±0.37</td>
<td>65.14±0.34</td>
<td>64.46±0.25b</td>
</tr>
<tr>
<td>Mean</td>
<td>64.81±0.25A</td>
<td>63.68±0.29B</td>
<td>65.95±0.39A</td>
<td>66.12±0.25A</td>
<td>65.14±0.21</td>
</tr>
<tr>
<td>PH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group-I</td>
<td>6.94±0.02</td>
<td>6.90±0.01</td>
<td>6.98±0.02</td>
<td>6.86±0.02</td>
<td>6.89±0.01a</td>
</tr>
<tr>
<td>Group-II</td>
<td>6.93±0.01</td>
<td>6.90±0.01</td>
<td>6.90±0.01</td>
<td>6.85±0.01</td>
<td>6.89±0.01a</td>
</tr>
<tr>
<td>Group-III</td>
<td>6.92±0.01</td>
<td>6.89±0.01</td>
<td>6.99±0.02</td>
<td>6.87±0.01</td>
<td>6.81±0.02a</td>
</tr>
<tr>
<td>Mean</td>
<td>6.93±0.01A</td>
<td>6.89±0.01A</td>
<td>6.92±0.01A</td>
<td>6.86±0.01A</td>
<td>6.89±0.03</td>
</tr>
<tr>
<td>Sperm conc. (10^9) per ml</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group-I</td>
<td>1.01±0.01</td>
<td>0.90±0.01</td>
<td>0.97±0.01</td>
<td>0.98±0.01</td>
<td>0.96±0.01a</td>
</tr>
<tr>
<td>Group-II</td>
<td>1.09±0.01</td>
<td>0.91±0.01</td>
<td>1.08±0.01</td>
<td>1.02±0.01</td>
<td>1.00±0.01a</td>
</tr>
<tr>
<td>Group-III</td>
<td>1.03±0.01</td>
<td>0.90±0.01</td>
<td>0.97±0.01</td>
<td>0.99±0.01</td>
<td>0.97±0.01a</td>
</tr>
<tr>
<td>Mean</td>
<td>1.04±0.01A</td>
<td>0.90±0.01A</td>
<td>1.00±0.01A</td>
<td>0.99±0.01A</td>
<td>0.98±0.01</td>
</tr>
<tr>
<td>Post thaw Motility (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group-I</td>
<td>43.06±0.51</td>
<td>42.37±0.41</td>
<td>43.89±0.46</td>
<td>43.34±0.19</td>
<td>43.16±0.31a</td>
</tr>
<tr>
<td>Group-II</td>
<td>43.65±0.43</td>
<td>42.62±0.35</td>
<td>44.08±0.35</td>
<td>43.67±0.38</td>
<td>43.50±0.21a</td>
</tr>
<tr>
<td>Group-III</td>
<td>43.28±0.39</td>
<td>42.52±0.36</td>
<td>43.25±0.57</td>
<td>43.20±0.35</td>
<td>43.06±0.51a</td>
</tr>
<tr>
<td>Mean</td>
<td>43.33±0.31A</td>
<td>42.50±0.23A</td>
<td>43.47±0.43A</td>
<td>43.40±0.29A</td>
<td>43.24±0.35</td>
</tr>
<tr>
<td>Doses produced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group-I</td>
<td>162.35±5.16</td>
<td>151.97±4.20</td>
<td>137.80±4.62</td>
<td>145.41±6.02</td>
<td>149.38±5.25b</td>
</tr>
<tr>
<td>Group-II</td>
<td>183.85±4.35</td>
<td>166.81±3.60</td>
<td>174.23±3.90</td>
<td>173.65±3.56</td>
<td>174.83±3.28a</td>
</tr>
<tr>
<td>Group-III</td>
<td>149.35±3.97</td>
<td>149.85±3.65</td>
<td>152.18±5.75</td>
<td>159.07±3.55</td>
<td>152.51±2.35b</td>
</tr>
<tr>
<td>Mean</td>
<td>165.16±3.25A</td>
<td>156.21±3.33B</td>
<td>154.73±4.82B</td>
<td>159.37±4.02B</td>
<td>158.87±4.05</td>
</tr>
</tbody>
</table>

Values with different lower case letters in a column or upper case letters in a row for each parameter differ significantly (P<0.05).
The overall mean sperm concentration was 0.98 ±
0.01 billions/ml, the range being 0.6 to 1.85 billions per
ml. There was no significant difference in sperm
concentration of bulls in different age groups and
during four seasons of the year, although it was the
highest (1.00 ± 0.01) for ejaculates collected from bulls
in group-II and the lowest in group-I (0.96 ± 0.01). The
highest sperm concentration was found during the
Spring (1.04 ± 0.01), while lowest in Summer (0.90 ±
0.01). Mathevon et al. (1998) reported mean sperm
concentration of 1.03 ± 0.02 billions/ml in cross bred
bulls.

Post thaw motility percentage
Higher post thaw motility percentage was observed
during Spring (43.33 ± 0.31), Autumn (43.47 ± 0.43)
and Winter (43.40 ± 0.29) as compared to Summer
(42.50 ± 0.23), however, the difference was non
significant. Similarly, bulls of 3 age groups did not
differ significantly from one another. These findings
differed with the findings of Muhuyi (1988), who
reported that motility after thawing was 55.7% and
concluded that the young bulls should be re-evaluated
before regular production.

Doses produced per ejaculate
Overall mean doses produced per ejaculate from
bulls of three age groups were 158.87 ± 4.05. Higher
(P<0.05) doses produced per ejaculate were recorded in
group-II (174.63 ± 3.29) as compared to group-I
(149.38 ± 5.25) and group-III (152.61 ± 2.35). However,
the latter two groups differed non significantly from each other. Significantly higher
doses were produced per ejaculate during the Spring
(165.18 ± 3.25) as compared to Summer (156.21 ±
3.33), Autumn (154.73 ± 4.82) and Winter (159.37 ±
4.02) seasons, the latter three seasons differed non
significantly from one another. The number of doses
which can be obtained from an ejaculate depends on the
volume, rate of motility, concentration of spermatozoa
per ml of ejaculate, percentage of normal spermatozoa
in the ejaculate and concentration of spermatozoa
required per AI dose (Salisbury et al., 1978).

In this study, seminal parameters including
ejaculatory volume, sperm motility and number of
doses produced were better during Spring than the other
seasons and in bulls of age group-II than groups-I and
III. Better results of seminal parameters in Sahiwal
bulls in Spring could be due to many factors such as
mild environmental temperature, optimum humidity
and excessive availability of fodder. In this context,
Mathevon et al. (1998) reported that temperature,
photoperiod, humidity, feed quality and housing are the
factors affecting the semen production and quality.
Difference in the quantity of feed (Stratskii, 1990) or in
feed composition (Castillo et al., 1987) could also
affect semen output.

Based on the findings of the present study, it may
be concluded that in Sahiwal bulls the seminal
parameters including volume, percent motility and
number of doses produced were influenced by age and
season. Semen from adult bulls had better quality than
that from young and old bulls. Similarly, these bulls
produced better quality semen during Spring than in
other seasons. It is suggested that morphological
studies, transaminase activities along with biochemical
aspects and fertility of frozen semen in Sahiwal bulls
should be conducted in different age groups and
seasons of the year for better understanding.

REFERENCES

Ahmad, K., R.A. Chaudhry, W. Ahmed and Ala-ud-
Din, 1980. Deep freezing of buffalo sperma-
tozoa by straw method. Pakistan J. Agri. Sci., 17:
1-2.

Barbosa, R.T., P.F. Barbosa, M.M. Alencar and V.O.
behaviour and semen traits in Canchin and Nelore
bulls. Revista Brasileria de Reproducao Animal,
15(3-4): 159-170.

Barnabe, V.H., R.C. Barnabe, R.P. Appuda, J.A.
Visintin and M.T.L. Freitas, 1992. Seasonal
behaviour of semen collected by electro ejaculation
from buffaloes raised in SAO Paulo State

Mangurkar, 1992. Effect of age and season on
production performance of bulls. J. Anim. Sci., 62:
443-447.

Castillo, E., G. Tizol, J.L. Alvarez, M. Perez and R.
Baez, 1987. Reduction of the protein concentra-
tion level in the ration for Holstein sires I. Effect on

Duncan, D. B., 1955. Multiple range and multiple F

Everett, R.W. and B. Bean, 1982. Environmental
influences on semen output. J. Dairy Sci., 61: 90-
95.

Fonesca, V.O., G.A. Crudeli, E.V. Silva and A.T.
Herminny, 1992 Effect of season on semen
traits and scrotal circumference of Nelore bulls.

Environmental, managemental and genetic factors
affecting semen production in Holstein bulls. J.


