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 Cryptosporidiosis caused by Cryptosporidium protozoa is a widespread intestinal 

disease that affects both humans and animals globally. Direct contact or 

contaminated food and water can spread infectious parasitic oocysts, which are 

excreted in the feces of infected individuals and can live in harsh environments. It is 

challenging to remove the parasite from polluted surroundings because of the 

oocyst’s small size, flexibility, persistence, and resistance to standard disinfectants. 

Both the inactivation of oocysts and treatment of infected individuals are required to 

achieve adequate control. However, few medications are used to treat 

cryptosporidiosis in animals and several medications are frequently used to treat 

disease in humans. Unfortunately, none of them fully addresses the parasitological 

and clinical response. Therefore, control of cryptosporidiosis remains a global 

challenge in both veterinary and human medicine. New alternative compounds are 

needed to treat cryptosporidiosis because existing chemotherapeutic treatments are 

not very effective. Plant products are considered efficient sources for their treatment 

as they are environment-friendly, non-toxic, and have wide therapeutic potential. 

The current review will focus on plant-based extracts with their minimum side 

effects and multifaceted bioactivity, representing a suitable alternative in combating 

cryptosporidiosis. Plant acts through different mechanisms and several studies are 

summarized here. 
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INTRODUCTION 

 

Cryptosporidium is an obligate intracellular 

apicomplexan protozoon that infects intestinal and 

respiratory epitheliums of various species, including 

reptiles, birds, ruminants, felines, canines, and humans 

(Scorza and Lappin, 2021; Abbas et al., 2022; Antonio et 

al., 2023; Rossi et al., 2024). Cryptosporidiosis is a 

diarrhea-causing disease in humans and animals (Fayer 

and Ungar, 1986; Crawford 1988; Zhang et al., 2000; 

Helmy and Hafez, 2022; Golomazou et al., 2024). A 

severe infection damages the villi, enlarges the crypts, and 

causes plasma cells and lymphocytes to gather in the 

lamina propria.  Life-threatening watery diarrhea and 

dehydration are due to electrolyte imbalance and 

increased permeability of chloride ions through the 

membrane (Chen et al., 2002; Leitch and He, 2011; Khalil 

et al., 2018; Popa and Popa, 2022; Corso et al., 2023). 

Additional mild symptoms include fever, nausea, 

vomiting, thirst, abdominal cramping, anorexia, and 

stunted growth. Symptoms appear in the first week after 

infection and resolve in two to three weeks in healthy 

individuals with better immune status (Ryan et al., 2021; 

Namazi and Razavi, 2024). In immunocompromised 

(HIV-infected) individuals, four clinical symptoms, 

including chronic diarrhea, recurring diarrhea, transient 

diarrhea, and cholera-like conditions, have been reported 

(Liu et al., 2020; Helmy and Hafez, 2022; Zuo et al., 

2023; Wang et al., 2024). The highest global prevalence 

of cryptosporidiosis, ranging from 11-78%, was reported 

in claves (Hatam-Nahavandi et al., 2019), and the 

causative agent was C. parvum in cattle manure.   

The control of Cryptosporidium is very important 

due to its global outbreaks and the severity of infections. 

For this reason, various chemical drugs with known 

mechanisms of action have been used over the years to 

control cryptosporidiosis (Verdaguer et al., 2019; Ali et 

al., 2024; Lenière et al., 2024).  The frequent and 

continuous use of these synthetic chemical anti-

Cryptosporidium drugs has led to the development of 
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parasitic resistance. Some modified drugs, such as 

nitazoxanide and paromomycin, are being used globally 

in immunocompetent patients. However, in 

immunocompromised (AIDS) patients where immunity 

is too weak to fully eliminate the parasite, they can only 

be effective in improving clinical manifestations. Both 

these drugs are target-specific but are not effective for 

all life stages of the Cryptosporidium parasite (Ali et al., 

2024). Additionally, Cryptosporidium species have 

developed some natural resistance against these drugs 

(Zhu et al., 2021) because of their unique location in the 

host intestine, variation in biochemical pathways, and 

the existence of specific proteins that are responsible for 

the transport of drugs inside and outside of the cell 

(Hasan et al., 2021; Ali et al., 2024). The genomic study 

revealed that some of the Cryptosporidium species, 

particularly C. parvum, have a close resemblance to 

gregarine parasites and separate from other parasites of 

apicomplexans (Khan et al., 2018). Furthermore, this 

parasite shows variation in its protein structure and lacks 

a plastid genome responsible for coding for ribosomal 

proteins and amplification of the products (Baptista et 

al., 2021). As a result, the activity of various drugs 

(clindamycin and other macrolides) has been greatly 

reduced. Moreover, this parasite possesses a different 

enzymatic genome compared to other apicomplexans.  

For example, the genomic structure of the dihydrofolate 

reductase (DHFR) enzyme of Cryptosporidium is quite 

different from the DHFR of Plasmodium (Bhagat et al., 

2022). This change in the sequence of a gene enables the 

Cryptosporidium to resist 2, 4-aminopyrimidine 

inhibitors (Chaianantakul et al., 2020). Furthermore, the 

existence of multidrug-resistant (MDR) transporters in 

Cryptosporidium could aid in resistance (Knight, 2024). 

Other than resistance, some more problems related to the 

side effects of drugs have also been observed; for 

example, the prolonged use of a major drug named 

nitazoxanide leads to abdominal pain, nausea, vomiting, 

headache, and loss of appetite (El Saftawy et al., 2024). 

Ecotoxicological effects were observed when 

paromomycin and azithromycin were used (Tagliazucchi 

et al., 2024). These drugs are poorly metabolized and 

excreted in urine and feces, contaminate the aquatic 

environment, and disturb the nitrogen cycle and 

ecological niche (Stanley, 2024). These drugs also 

disturb the microflora of the soil, hence causing the 

decomposition of nutrients and microbial imbalance. The 

other anti-Cryptosporidium drugs also disturb the 

microflora of the intestine in humans and animals and 

cause intestinal ulcers and some other severe infections 

(Thakur et al., 2024). Similarly, vaccination against 

Cryptosporidium has also been tried but not 

implemented yet due to the complex life cycle, diversity 

of parasitic strains, antigenic variation, unique 

intracellular location, and immunomodulation (Du, 

2021; Hasan and Mia, 2022; Palomo-Ligas et al., 2023).  

No doubt the development of the vaccine is in progress, 

but it is projected to be expensive (Jumani et al., 2021). 

Table 1 summarizes various chemical drugs used to treat 

cryptosporidiosis including their mode of action, 

targeted hosts, and associated limitations.  

Because of the drug resistance, ecotoxicity, side 

effects, and high costs, there is a dire need to generate 

some alternatives, including botanicals, essential oils, 

nanoparticles, and probiotics (Ahmad et al., 2024; Abbas 

et al., 2025; Ambrose et al., 2025). Nowadays, scientists 

and researchers are moving toward more reliable 

alternatives called botanicals and their active components 

(Munir et al., 2023; Gholamine et al., 2024). The reason 

for selecting plants and their components is that they are 

locally sourced, biodegradable and eco-friendly, broad-

spectrum activity, less toxic, cost-effective, and target 

specific to control intestinal Cryptosporidium (Akinnubi, 

2024; Maji et al., 2024; Moreno-Mesonero et al., 2024).  

Many plant extracts and their bioactive components are 

broadly investigated to determine their efficacy against 

Cryptosporidium and their targeted mechanism of action 

(El-Shewehy et al., 2023; Namazi and Razavi, 2024). These 

research findings have revealed the antiprotozoal action of 

plant extracts and their active components (El-Shewehy et 

al., 2023; Ranasinghe et al., 2023). The plant components 

are unique antioxidants in targeting the acetylcholine 

receptors of the protozoa, and on the other hand, they cause 

excystation of the oocyst of the Cryptosporidium species 

(Palomo-Ligas et al., 2023). By considering their 

importance and their medicinal and therapeutic potentials, 

this review study discusses various plant extracts, their 

chemical composition, and their mode of action against 

Cryptosporidium species. The limitations and future 

challenges have also been discussed in the later section. 

 

Life cycle and zoonotic transmission 

of Cryptosporidium: Cryptosporidium has a 

monoxenous complex life cycle consisting of various 

developmental stages, including asexual multiplication 

and sexual reproduction (Jamil et al., 2023). The cycle 

begins when mature, thick-walled sporulated oocysts, 

each containing four sporozoites, are ingested by the 

host's digestive tract (Abdullah and Dyary, 2023). 

Stimulating factors and the microenvironment of the 

intestine, such as temperature, pH, bile salts, carbon 

dioxide, gastric secretions, and pancreatic enzymes, 

cause the excystation of mature oocytes that result in the 

release of sporozoites (Kato et al., 2001; Mayerberger et 

al., 2023). Moreover, the excystation also depends on 

sporozoite-associated aminopeptidases, cysteine and 

serine proteases, phospholipases, and heat shock proteins 

(Okhuysen et al., 1994; O’Hara and Chen, 2011). 

Glycoproteins attached to intestinal epithelium aid 

sporozoites in actively penetrating the host cell 

membrane, forming an extra cytoplasmic 

parasitophorous vacuole that acts as a niche for the 

replication and development of sporozoites 

(Mayerberger et al., 2023). Sporozoites are transformed 

into trophozoites inside the vacuole, which then go 

through the asexual growth phase and produce meronts 

of type 1 (6 to 8 merozoites) and type 2 (4 merozoites 

(Bandyopadhyay et al., 2022; Bertuccini et al., 2024). 

When released, these merozoites start asexual 

multiplication by infecting other host cells and 

producing further type 1 and type 2 meronts (Tandel et 

al., 2019). The sexual phase starts when type 2 meronts 

produce micro and macrogamonts, which undergo 

fertilization and produce thick and thin-walled oocysts 

(Lamont, 2024). The thin-walled oocysts remain inside 

the host body, where they rupture and cause 
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autoinfection, while thick-walled shed through feces and 

infect other susceptible hosts (Balendran et al., 2024). 

The quantity of oocysts that an infected individual 

excretes can vary significantly. Calves infected with 105 

oocysts often expel 109 to 1010 oocysts over 7-10 days 

(English et al., 2022).  

 
Table 1: Use of various chemical drugs against Cryptosporidium parasite, their mode of action, efficacy, and limitations   

Drug class  Structure  Drug 

name 

Species  Mode of action Efficacy of the 

drug 

Limitation  References  

Thiazolide 

Derivatives 

 

Nitazox

anide  

Humans, cats, 

dogs  

Targets ferredoxin 

oxidoreductase and 
interferes with the 
electron transport 
chain 

Reduced egg 

shedding, 
improved 
diarrhea 

Does not affect 

oocysts and is 
not distributed 
globally 

(Rossignol et al., 

2001; Diptyanusa 
and Sari, 2021; 
Sykes, 2022)  

Aminox
anide  

Humans, dogs, 
cats, calves,  
lambs 

bucks, goats, and 
sheep 

Interferes with 
ferredoxin 
oxidoreductase and 

inhibits its activity 

Reduced egg 
shedding, 
improved 

clinical 
presentation 

Does not affect 
oocysts and is 
not distributed 

globally 

(Widmer et al., 
2020; François et 
al., 2021) 

Aminoglyco

sides  

 

Paromo

mycin  

Humans, calves, 

kids, lambs, 
goats, and bucks  

Binds with 30S 

ribosomal subunit, 
inhibits the synthesis of 
mRNA 

Reduced egg 

shedding, 
improved 
diarrhea 

Drug resistance, 

poor 
penetration, and 
nephrotoxicity 

(Lin et al., 2018; 

(Diptyanusa and 
Sari, 2021; 
François et al., 

2021) 

Macrolide   

 
 
 

Azithro
mycin 

Humans, cats, 
dogs, foals, 

calves, goats, and 
lambs 

Inhibits peptidyl 
transferase activity and 

inhibits protein 
synthesis 

Reduced egg 
shedding, 

improved 
clinical 
conditions 

Minimum 
parasite 

clearance and 
diarrhea. Showed 
better results 

when used in 
combination with 

Spiramycin, drug 
resistance 

(Kadappu et al., 
2002; Sykes, 

2022; Namazi and 
Razavi, 2024)  

Spiramy
cin 

Humans, cats, 
dogs, calves, 
goats, and lambs 

Blocks peptide 
elongation and inhibits 
translation 

Reduced egg 
shedding, 
improved 

clinical 
presentations 

Diarrhea, 
abdominal 
cramps, and 

minimum 
parasite 
clearance 

showed better 
results when 
used in 

combination with 
azithromycin, 
drug resistance, 

and ototoxicity 

(FarahatAllam et 
al., 2020; Al-
Dulaimi et al., 

2021) 

Rifamycin 

class of 
antibiotic  

 
 

Rifaximi

n 

Humans  Attached is the beta 

subunit of RNA 
polymerase, which 

inhibits transcription 

Reduced egg 

shedding, 
improved 

clinical signs,  

Action is limited 

and indirect, not 
a primary line 

treatment 

(Amenta et al., 

1999; Gathe et 
al., 2008)  

Nitrofurazo

ne 
derivatives 

 
 

Furazoli

done  

Humans, cats, 

dogs, calves, 
lamb, goats 

Production of hydrogen 

peroxide and hydroxyl 
radical. Also inhibits the 
activity of glutathione 
reductase of C. parvum  

Reduced oocyst 

shedding, killed 
trophozoites, 
improved 
diarrhea  

Non-targeted 

drug, drug 
resistance, 
ecotoxic 

(Randhawa et al., 

2012; Sumbria 
and Singla, 2019)  

Triazole 
derivatives  

 
 

Itracona
zole  

Humans  The exact mechanism is 
unknown, but good 
anti-inflammatory  

Reduced egg 
shedding 

Not target-
specific for 
Cryptosporidium, 

but it is an 
antifungal 

(Patel et al., 2023; 
Vaillant and Naik, 
2023) 

Heterocycli

c aromatic 
compounds 

 
 

Benzimi

dazoles  

Humans, calves, 

lambs, goats 

Inhibits tubulin 

polymerization, 
deformed the 

cytoskeleton, and 

decreased glucose 
uptake 

Reduced egg 

shedding, 
improved 

clinical 

presentations 

Non-effective in 

rodents, Drug 
resistance, 

ecotoxicity,  

(MacDonald et al., 

2004; 
Kirubakaran et al., 

2012; Zhang et 

al., 2012) 

Quinazolin

one 
alkaloids  

 

Halofugi

none 

Dogs and calves Inhibits prolyl-tRNA-

synthetase, inhibit the 
production of proline 
(used to synthesize 

Reduced egg 

shedding 

Drug resistance,  

prohibited in 
diarrhea, and it is 
also non-licensed  

(Silverlås et al., 

2009 Brainard et 
al., 2021; Namazi 
and Razavi, 2024) 
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 sporozoites and 

merozoites) 

Nitroimidaz
ole 
antibiotics  

 

 

Metroni
dazole  

Humans  Production of nitrosol 
compounds damages 
DNA and Nucleic acid 

Reduced egg 
shedding, 
improved 

clinical 
presentations 

Drug resistance, 
toxicity, 
abdominal 

cramps, nausea, 
vomiting 

(Masood et al., 
2013; Abouel-
Nour et al., 2016; 

Sn and Al-
Khashab, 2022) 

Tinidazo
le  

Humans  Production of nitrogen 
reactive species and 

induced oxidative stress 

Reduced egg 
shedding, 

improved 
clinical 
presentations 

Drug resistance, 
toxicity, 

abdominal 
cramps, nausea, 
vomiting 

(Mejia, 2016) 

Co-
trimoxazole  

 

Trimeth
oprim-
Sulfamet

hoxazol
e  

Dogs and 
humans   

Inhibits biosynthesis of 
folate synthesis 
necessary for DNA and 

nucleotide synthesis 

Reduced egg 
shedding, 
improved 

clinical signs 

Antibiotic, non-
targeted drug, 
drug resistance, 

toxicity, 
dizziness, and 
diarrhea 

(Nelson et al., 
2001; Ordoobadi, 
2024) 

Hydroxy-

1,4-
naphthoqui
none 

derivatives  
 

Atovaqu

one and 
buparva
quone   

Humans, calves  Targets mitochondrion 

and reduces oocyst 
shedding  

Reduced egg 

shedding, 
improved signs 

Expensive, 

specific for 
malaria, non-
targeted to 

Cryptosporidium 

(Giacometti et al., 

1996; Güney and 
Şentürk, 2023) 

Hyperimmu

ne bovine 
colostrum  

  Human and 

claves 

Production of IgG 

antibodies enables 
oocyst not to invade 
microvilli 

Reduced 

diarrhea 

Not effective in 

immunocompro
mised patients 

(Gamsjäger et al., 

2023) 

 

Transmissions of Cryptosporidium protozoa happen 

from animal to animal, animal to human (zoonosis), human 

to animal (reverse zoonosis), and human to human (Hussain 

et al., 2021; Javed and Alkheraije, 2023; Utami, 2024). 

Zoonotic transmission mostly takes fecal-oral routes, 

contact with the manure of infected animals, and 

contaminated water and food (Robertson and Woolsey, 

2023). Since the 1980s, it has been believed that cattle and 

cattle manure are a significant source of zoonotic 

cryptosporidiosis. The estimated annual global 

Cryptosporidium load in livestock manure is 3.2 × 1023 

oocysts (Polley et al., 2022). Humans, particularly farmers, 

veterinarians, and researchers, get infections through the 

ingestion of mature thick-walled oocysts excreted by 

infected animals (Vermeulen et al., 2019). The midwestern 

states of the United States, where the livestock and dairy 

sector was most prevalent, had the highest incidence of 

cryptosporidiosis (Yoder et al., 2007). Similarly in the 

United Kingdom, Cryptosporidium infections are higher in 

manure-rich landfill areas (Lake et al., 2007). Conversely, a 

small number of epidemiologic investigations have linked 

sheep to human cryptosporidiosis. There is minimal 

evidence linking companion animals to the spread of 

human cryptosporidiosis. The idea that dogs may be a 

major source of human cryptosporidiosis has been around 

for a while. However, a misunderstanding that C. parvum 

causes cryptosporidiosis in all mammals and the finding of 

direct transmission of the parasite from calves to humans 

served as the main foundation for this (Shukla et al., 2006). 

In England, there was no evidence that contact with dogs or 

cats increased the risk of contracting cryptosporidiosis (Goh 

et al., 2004). 

Mature oocysts are very stable, resistant to intense 

environmental conditions, and survive during disinfection 

and chlorination of water (Lefebvre et al., 2021). These 

enduring parasites constitute the largest disease hazard to 

the water sector and are accountable for the majority of 

worldwide protozoal water outbreaks (Gharpure et al., 

2019). Additionally, Cryptosporidium is acknowledged as 

a significant foodborne pathogen, responsible for about 8 

million foodborne illness cases per year and over 40 major 

outbreaks to date (Zahedi, 2018). Food contaminations 

occur during direct contact with utensils, infected food 

handlers, contaminated surfaces, or exposure to 

Cryptosporidium-contaminated water. Raw salad and 

unpasteurized milk may also be the source of foodborne 

outbreaks of cryptosporidiosis (Zahedi and Ryan, 2020). 

Fig. 1 shows the life cycle of Cryptosporidium and its 

zoonotic transmission from humans to animals.  

 

Plant extracts: Plant extracts are complex substances that 

are extracted from plants using a variety of techniques 

including maceration, soxhlet, hydro distillation, 

ultrasound-assisted extraction, supercritical fluid extraction, 

microwave-assisted extraction, pressurized liquid 

extraction, cold press extraction, liquid-liquid extraction, 

chromatography, and fermentation-assisted extraction 

(Bitwell et al., 2023). Every plant has its own composition, 

and it varies due to differences in extraction solvents, 

techniques, temperature, duration, and drying methods 

(Heinrich et al., 2022; Nurzyńska-Wierdak, 2023; Zhang et 

al., 2023b). Additional causes include additional processing 

and procedures used to concentrate or eliminate specific 

elements or groups of constituents (Wen et al., 2023). 

Genetic, climatic, and agricultural factors can cause further 

diversity in the composition of botanical extracts produced 

from the same plant species and plant part as starting 

materials (Palit and Mandal, 2021). Using standardized 

extraction techniques and controlling the inherent 

variability in the starting material can help produce extracts 
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with a constant composition. Furthermore, the chemical 

composition of plant extract from the same plant varies at 

different growing periods of the plant as reported 

previously in the Mentha piperita plant (Abdi and Karami, 

2020; Hudz et al., 2023; Zhang et al., 2023a).  

Plants can be extracted using a variety of techniques, 

but the most straightforward and significant economic 

way is hydro-distillation, which is employed in 

laboratories (Katekar et al., 2023). Plants and plant 

extracts have been used since ancient times as home 

remedies (Azam et al., 2020; Islam et al., 2021; Sebo et 

al., 2024). People use them because of their therapeutic 

and pharmacological effects. They have been used as 

antibacterials (Seukep et al., 2023; Abdallah et al., 2024), 

antivirals (Mohammed et al., 2023), antifungals (Zhou et 

al., 2023), antiparasitic (Benlarbi et al., 2023), and 

antiprotozoals (Namazi and Razavi, 2024). 

 

Chemical composition of plant extracts: Plant extracts 

are different in composition and contain hundreds of 

active chemical components (Meng-jie et al., 2023). 

Mostly, two to three components are higher in each 

plant. For example, the extract of Camellia sinensis 

commonly known as green tea is rich in polyphenols 

(30-40%) and alkaloids (2-4%) while extract obtained 

from the rhizome of Curcuma longa has 2-8% 

curcuminoids in it (Hondale et al., 2024; Wu et al., 

2024).  Plant extracts are primarily composed of 

different classes, i.e., polyphenols, terpenoids, alkaloids, 

and other nitrogenous-based compounds (Elshafie et al., 

2023). Polyphenols and terpenoids are the most 

important in them. Depending on phenol number, 

polyphenols are further classified into flavonoids, non-

flavonoids, and phenolic acid, while terpenoids are 

classified as carotenoids, non-carotenoids, and thiols 

based on their isoprenoid unit (Min et al., 2023; 

Zagoskina et al., 2023). Flavonoids and phenolic acids 

are more important in them. Fig. 2 gives the general 

classification of plant extracts and their chemical 

compounds with their general structures. 
 

 
 

Fig. 1: Life cycle of Cryptosporidium and its zoonotic transmission (www.canva.com).  

http://www.canva.com/
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Fig. 2: Classification of plant-derived active compounds (www.canva.com). 

 

Important plants and their bioactive components: 

Various plant species have been used for centuries in 

treating protozoal infections and they have shown 

promising results against them (Woolsey et al., 2019). 

Some of the plant species which are very effective and 

studied against cryptosporidiosis include Allium cepa 

(onion), Zygophallum fabago (Syrian bean caper), 

Zingiber officinale (ginger), Viscum album (mistletoe), 

Vaccinium myrtillus (blueberries), Thymus vulgarus 

(thyme), Syzygium aromaticum (clove), Silybum 

marianum (thistle), Salvia officinalis (sage), Panax 

ginseng (ginseng), Punica granatum (pomegranate), 

Origanum vulgare (origanum), Olea europae (olive), 

Nigella sativa (black cumin), Moringa oleifera (drum 

stick), Mangifera indica (Mango), Mentha piperita 

(peppermint), Matricaria chamomilla (chamomile), Ficus 

carica (common figs), Ferula asafoetida (ferula), 

Echinacea purpurea (echinacea), Cinnamomum verum 

(cinnamon), Curcuma longa (turmeric), Commiphor 

molmol (mirazid), Artemisia spicigera (spiked 

wormwood), Artemisia herba alba (white wormwood), 

Aloe vera (aloe vera), Allium sativum (garlic) etc. 

(Ojuromi and Ashafa, 2020; Silva dos Santos et al., 2021; 

Ranasinghe et al., 2023; Namazi and Razavi, 2024). 

These plant species have various bioactive molecules that 

have shown therapeutic action against cryptosporidiosis-

causing parasites. Some important plants and their major 

active compounds used against the Cryptosporidium 

parasite are shown in Fig. 3.  

 

Mode of action of plant extracts: The antiprotozoal action 

of plant extracts is strongly associated with the purified 

compounds and active biomolecules in them (Ranasinghe et 

al., 2022). Since there are so many active biomolecules, 

plant extracts do not seem to have any specific mechanism 

of action (Khursheed et al., 2022). It has also been studied 

that plant extract as a whole has shown better results and 

efficacy as compared to its components because of their 

http://www.canva.com/
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Fig. 3: Some important plants and their active components (www.canva.com). 
 

synergistic mode of action in terms of better absorption and 

neutralization of toxic metals, increased solubility and 

permeability, multitarget interaction, and decreased 

degradation (Chen et al., 2022; Vaou et al., 2022; Jeong et 

al., 2023; Khan et al., 2023). Furthermore, a single 

biomolecule can accumulate in the cell cause toxicity to the 

cellular organelles, and interfere with the energy 

metabolism of the host cell (Xu et al., 2020). For example, 

a comparison of the entire turmeric extract and isolated 

curcumin (Curcuma longa) revealed that the extract has 

higher antioxidant activity because of the synergistic effects 

of polysaccharides and volatile oils (Ballester et al., 2023). 

Plant extracts and their components showed various mode 

actions against Cryptosporidium (Namazi and Razavi, 

2024). They act as antioxidants, neurotoxic, disrupt 

membrane permeability, inhibit protein synthesis, and 

damage to nucleus and DNA of Cryptosporidium (Kumar 

et al., 2023; Ranasinghe et al., 2023). 

 

Plant extracts as antioxidants against 

cryptosporidiosis: Antioxidants are those substances that 

support the cell to reduce oxidative stress generated by 

reactive oxygen species (superoxide ion, hydrogen 

peroxide, hydroxyl radical, and free oxygen) and reactive 

nitrogen species (RNS) (nitric oxide and peroxynitrite) 

(Jaffri, 2023; Jomova et al., 2023). The detrimental 

effects of ROS and RNS in biological systems can be 

countered or inhibited by plant extracts and their bioactive 

constituents (Bouyahya et al., 2024). Phenolic chemicals, 

which are categorized as major antioxidants among plant 

extracts, can donate a hydrogen atom to produce a 

phenoxy radical, which confers antioxidant capabilities 

via the radical scavenging process (Santos-Sánchez et al., 

2019; Atrooz et al., 2024). Plant extracts and their 

components are useful in antiparasitic therapy because 

they frequently show selective toxicity against parasites 

while protecting host cells (El-Seedi et al., 2023). The 

Artemisia plant extracts have been found effective against 

various genus protozoans, including the genus Giardia, 

Plasmodium, Trypanosoma, and Blastocystis (Mokhtar et 

al., 2019; Ojuromi and Ashafa, 2020; Saqlain et al., 

2024). Olea europaea and Fiscus carica extracts have 

been shown to have in vivo anti-Cryptosporidium 

properties, raising plasma levels of glutathione reduced 

form, superoxide dismutase, and catalase (Abd El-Hamed 

et al., 2021). The oocysts of Cryptosporidium are very 

resistant to harsh environmental conditions and synthetic 

chemical drugs and can survive from 6 months to one year 

(Rousseau et al., 2018). Based on the above statement, the 

antioxidant effect of ethanolic extract of Artemisia 

Judaica extract and its phenolic (ArPh) and terpenoids 

(ArT) components have been investigated and found 

effective against the resistant oocysts of C. parvum. ArPh 

and ArT not only reduced the oocyst number but also 

changed the morphology of the oocysts of C. parvum 

(Ahmed et al., 2023). Another study showed that six 

polyphenolic compounds have anti-C. parvum activity, 

suggesting that these compounds could be used either by 

http://www.canva.com/
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themselves or in combination to increase their 

effectiveness (Ali et al., 2024). Similarly, when C. 

parvum-infected mice were treated with P. granatum peel 

suspension, the mice showed improvement in terms of 

reduced oocyst count, and intestinal morphology was 

changed (Al-Mathal and Alsalem, 2012).  

 

Membrane disruption and ion imbalance: All 

Cryptosporidium protozoans have double membrane-

bounded parasites with a specialized structure called a 

pellicle for protection (host immune response) and 

structural support (Tomazic et al., 2018). Essential 

intracellular substances leak out when the integrity of the 

membrane is compromised. It has been demonstrated that 

a number of plant extracts can interfere with the cell 

membrane of Cryptosporidium and change its 

permeability, causing cytoplasmic leakage and parasite 

death (Ullah et al., 2020). Extracts from plants, 

particularly those high in lipophilic substances like 

flavonoids, terpenoids, and saponins, interact with the 

lipid bilayer of the parasite (Ramdani et al., 2023). These 

substances can form pores in the membrane of the oocyst, 

resulting in ion imbalance and the leaking of essential cell 

components, integrate into the membrane and increase its 

fluidity and ultimately death of the Cryptosporidium 

oocyst (Al-Mathal and Alsalem, 2013). For example, 

saponins obtained from Quillaja saponaria combine with 

lipid membranes and destabilize them. This results in 

decreased parasite viability and the leaking of cellular 

contents (Böttcher, 2017). Numerous substances derived 

from plants interfere with membrane proteins, inhibit ion 

channels and membrane transporters, and impair the 

parasite's capacity to absorb nutrients and eliminate waste 

(Gorlenko et al., 2020; Kocyigit et al., 2023). On the other 

hand, they change the membrane's protein composition, 

which causes dysfunction and destabilization. For 

example, a berberine alkaloid obtained from Berberis 

vulgaris binds with membrane-bound enzymes and 

transport systems, reducing the parasite's ability to survive 

by altering its membrane function (Qian et al., 2023). 

Ahmed et al. (2023) verified the anti-oocyst activity of 

ArPh obtained from Artemisia Judaica against C. parvum. 

The study confirmed that phenolics bind with the outer 

surface of the oocyst of C. parvum and produce 

morphological alterations by increasing folds in the inner 

membrane that result in lysis and expulsion of their 

contents. Another study confirmed that naringenin and 

genistein obtained from Citrus sinensis and Glycina max, 

respectively were effective against C. parvum. They bind 

with the parasitic membrane and block the ion transport 

channel (Bose et al., 2022).  

 

Neurotoxic activity: Cryptosporidium needs 

neurotransmitters for its parasitic motility and cellular 

growth. Plant extracts and their active components, such 

as flavonoids, saponins, and alkaloids, can block 

neurotransmitters, thus reducing their invasion into the 

host cell and stopping intracellular growth (Borges et al., 

2016). For example, quercetin and kaempferol obtained 

from flavonoids inhibit the dependent process. Similarly, 

the alkaloid berberine has neurotoxic effects, disrupting 

intracellular signals by blocking acetylcholine 

neurotransmitters. This causes the parasite not to stick to 

the intestinal wall and is easily removed from the 

gastrointestinal tract (Silva dos Santos et al., 2021). 

Similarly, oregano and carvacrol block the calcium-

dependent protein kinase 1 (CDPK1) and affect the Ca2+ 

mediated signaling of C. parvum, which is required for 

invasion, differentiation, and regulation of other vital 

functions (Mohanty and Murhekar, 2023). The 

hydrophobicity and presence of hydroxyl groups in 

carvacrol and thymol may allow the phenols to penetrate 

the cell membrane and reduce parasitic infection by 

modulating cytoplasmic metabolic pathways such as ATP 

synthesis (Ali et al., 2024). In an in vivo study, the 100% 

inhibitory effect of ethanolic extract of leaves of Curcuma 

longa has been observed. Potential crypto sporicidal 

effects have also been observed for Vaccinium myrtillus 

with its polyphenolic compounds, Cinnamomum verum 

with its phenolic compounds, Allium cepa with its 

flavonoids and sulfide compounds, Allium sativum with 

its allicin, Mangifera indica with its mangiferin, Olea 

europaea with its oleuropein, and Punica granatum with 

its polyphenols and tannins especially against C. 

parvum and C. hominis (Chalmers et al., 2005; Anthony et 

al., 2007; Al-Mathal and Alsalem, 2013; Almoradie et al., 

2018; McKerr et al., 2022; Ali et al., 2024). All these 

plant extracts and their components not only reduced the 

oocyst shedding but also improved the morphology of the 

damaged intestinal tissues and increased the interferon 

level in C. parvum-infected mice. Furthermore, a study 

reported that A. sativum disrupts the normal physiological 

functions of parasite mobility, food absorption, and 

reproduction (Anthony et al., 2007) 

 

Nucleus and DNA damage: Plant extracts and their 

derivatives, such as polyphenols and terpenoids, produce 

ROS (hydrogen peroxide, hydroxyl ion, and superoxide 

ions) and RNS (nitric oxide) inside the parasitic cell that 

destroys the nucleotides and DNA strands (Chaves et al., 

2020). The DNA accumulates inside the parasitic cell and 

prevents transcription and translation. For example, a 

chemical component of curcumin obtained from Curcuma 

longa neutralizes ROS that causes the DNA to break into 

fragments and form new cross-links, leading to the 

denaturation of the genetic material (Aljedaie and Al-

Malki, 2020). Similarly, the plant alkaloids and other 

bioactive components inhibit DNA polymerase and 

topoisomerase enzymes (Bhambhani et al., 2021). 

Interference with DNA replication renders parasitic 

reproduction and induces cell death. Certain plant 

compounds, such as quinones, attach to the DNA 

molecule through covalent bonds or alkylation that leads 

to the insertion between the DNA strands and prevents 

gene expression and replication in Cryptosporidium. 

Ahmed et al. (2023) studied early and late apoptosis by 

using trypan blue staining, DNA fragmentation by Comet 

assay, and high ROS-mediated DNA fragmentation and 

confirmed that increased doses of ArPh did not induce any 

infection in mice infected with Cryptosporidium. Similar 

results were reported about the anti-Cryptosporidium 

activity of A. spicigera (Shahbazi et al., 2021). In another 

study, the methanol extract of Asafoetida reduced 

Cryptosporidium infection in experimentally infected 

mice and improved the histological alterations of small 

intestinal villi (Abdelmaksoud et al., 2020). In contrast, 
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neither water nor ethanol extracts of propolis could 

eliminate the infection, but they did lower oocyst 

shedding and affected sexual-stage development (Asfaram 

et al., 2021).  

 

Inhibition of protein synthesis in Cryptosporidium: 

Protein synthesis is very important for cell integrity and 

survival due to its structural importance in every organelle 

of the Cryptosporidium. Plant extracts such as alkaloids 

and flavonoids interfere with the ribosomes by binding 

with 40S and 60S subunits and inhibiting translation 

(Lim-Sylianco and Shier, 2020). Some plant components, 

such as quercetine, interfere with tRNA by binding with 

aminoacyl-tRNA, thus inhibiting translation (Mohammed 

et al., 2024).  Epigallocatechin gallate obtained from 

green tea has the same mode of action in inhibiting 

protein synthesis. Some plant components, such as 

curcumin obtained from Curcuma longa, inhibit RNA 

polymerase which in turn inhibits the synthesis of mRNA 

necessary for protein synthesis (Lee et al., 2021). Certain 

plant compounds inhibit enzymes involved in modifying 

proteins after synthesis, such as kinases and 

phospholipases (Corona-España et al., 2024). The parasite 

expends energy attempting protein synthesis, leading to 

metabolic stress and cell death. Plant extracts often 

selectively target parasite-specific pathways, sparing host 

cells (Anthony et al., 2007; Asfaram et al., 2021; Ballester 

et al., 2023). Fig. 4 illustrates the mechanism of the plant 

extracts, which outlines their physiological and 

biochemical pathways. As represented, the plant extracts 

primarily act as antioxidants, disrupt membrane 

permeability, and cause neurotoxicity. They also target 

DNA and nucleotides and inhibit protein synthesis. These 

mechanisms are further supported by the data presented in 

Table 2, which provides a brief overview of each plant 

extract with its extraction method and accurate dose with 

better efficacy against Cryptosporidium parasite.   

 

Limitations: Cryptosporidiosis may be avoided with the 

help of plant-based medications (Ullah et al., 2020). 

However, variability in composition and bioavailability 

can restrict their use (Shi et al., 2022). The main 

phytochemicals, such as flavonoids, glycosides, and 

tannins, are poorly soluble in water and lipids, which 

restrict their capacity to pass through biological 

membranes and cause inadequate absorption (Suteu et al., 

2020). Furthermore, the extremely acidic pH of the 

stomach and carbonated environment can further alter the 

pharmacokinetics of these substances (Mueed et al., 

2024). To get bioactive components, plants are also put 

through a variety of processes, including fermentation, 

distillation, purification, concentration, and extraction. 

The stability of active ingredients is questioned because 

they are subjected to oxidation and hydrolysis during 

these procedures (Finotti et al., 2024). Additionally, plant 

products frequently deteriorate, especially when stored, 

which results in the loss of active ingredients and the 

generation of inactive metabolites (Ansari et al., 2024). 

Concerns about the safety of plant-based medications are 

becoming more prevalent as their use grows worldwide. 

Despite their widespread use and appealing potential, 

many plants have not yet been confirmed safe or 

poisonous (Vilas-Boas et al., 2021). This results in a lack 

of awareness regarding their possible side effects and 

makes it challenging to determine the safest and most 

efficient treatments. 
 

 
 

Fig. 4: Mode of action of various plant extracts against Cryptosporidium (www.canva.com). 

http://www.canva.com/
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Table 2: Use of various plants and their active bioactive molecules with their specific mode of action against Cryptosporidium species 

Plant 

name 
(scientific 
name)  

Common 

names 

family 

name  

Major 

compounds  

Method of 

extraction   

Solvent 

used 

Dose (per 

kg body 
weight)  

Method

ology 

Animal 

model  

Mode of 

action  

Efficacy of the 

plants  

Parasitic 

species 
References  

Allium 
cepa 

Onion  Amaryllidac
eae  

Flavonoid 
and 
sulphoid 

compounds 

Hydro 
distillation  

Water 1mL/g In vitro 
and in 
vivo  

Mice  Antioxidant  Marked 
reduction in 
oocyst 

shedding 

C. 
parvum 

(El Ezz et 
al., 2011) 

Allium 
sativum  

Garlic  Amaryllidac
eae  

Allicin, 
diallyl 

disulfide  

Maceration, 
Hydrodistillat

ion  

Water   50mg/L In vitro 
and in 

vivo  

Cattle,  
buffalo, 

Mice  

Antioxidant  82% reduction 
of oocyst 

shedding 

C. 
parvum 

(Farid et al., 
2022) 

Aloe vera  Aloe vera Asphodelac
eae  

Acemannan, 
glucomanna

n, pectins 

Hydrodistillat
ion  

Water   250mg/L  In vitro 
and in 

vitro  

Mice  Antioxidants, 
immunomodul

ators, anti-
inflammatory  

100% 
reduction of 

infection 

 (Farid et al., 
2021) 

Artemisia 
herba alba 

White 
wormwo

od 

Asteraceae  Artemisinin, 
quercetin  

Hydrodistillat
ion  

Ethanol  500mg/day  In vivo  Mice Antioxidant, 
immunomodul

atory, and 
anti-
inflammatory 

50.50% 
reduction in 

oocyst count 

C. 
parvum 

(Elbahaie et 
al., 2023) 

Anethum 
graveolens  

Dill   Apiaceae  Coumarins, 
Flavonoids, 
Tannins 

Hydrodistillat
ion  

Water  20μL In vitro 
and in 
vivo 

Mice  Anti-oxidant, 
Anti-secretory 

95% 
Reduction in 
oocyst 

shedding, 
increased level 
of interferons  

C. 
parvum  

(Gaber et 
al., 2022) 

Artemisia 
spicigera  

Spiked 
wormwo
od 

Asteraceae  Phenols 
and 
flavonoids 

Hydrodistillat
ion  

Ethanol  0.2-
20mg/mL 

In vivo Mice  Antioxidant Marked 
reduction in 
oocyst 
shedding 

C. 
parvum 

(Shahbazi et 
al., 2021) 

Commipho
r myrrha  

Mirazid  Burseaceae  Phenolics 
and 
flavonoids 

Hydrodistillat
ion  

Water  10mg/kg/ 
day 

In vivo  Mice   Antioxidant 
and 
immunomodul

atory  

Marked 
reduction in 
oocyst 

shedding, 

increased IL-5 

and IFN-γ in 

the infected 
host, 
increased 

humoral 
response 

C. 
parvum 

(Abouel-
Nour et al., 
2016) 

Commipho

r molmol  

 Burseaceae Phenolics, 

(camphoric 
acid) 

Hydrodistillat

ion, 
maceration  

Water  500mg/kg/

day  

In vivo Mice  Antioxidant, 

immunomodul
atory  

70.15% 

reduction in 
oocyst 
shedding and 

intestinal 
trophozoites 

C. 

parvum 

(Fahmy et 

al., 2021) 

Coriander 
sativum  

Coriander  Apiaceae  Phenolics  Hydrodis-
tillation  

Aqueou
s and 

ethanol 

750-
1000mg/kg

/day 

In vivo Mice  Antioxidant  41% reduction 
in oocyst 

shedding 

C. 
parvum 

(Obiad et 
al., 2012) 

Curcuma 

longa  

Turmeric   Zingiber-

aceae  

Phenols 

(Curcumin) 

Soxhlet Ethanol  4.33mg/kg/

day and 

3.125-

200 μM  

In vitro 

and in 

vivo 

Mice  Antioxidant, 

anti-

inflammatory  

Inhibit 

phospholipase 

A2, oxidative 
damage, 
oocyst 

shedding 
reduced  

C. 

parvum 

(Ganai et 

al., 2023) 

Citrus 

sinensis  

Orange  Rutaceae  Hesperidin, 

coumarins 
poly ethoxy 
flavones   

Soxhlet  Ethanol 3g/kg  In vivo Mice  Interfere with 

lectin 
receptors, 
immunomodul

atory  

Reduced 

oocyst 
shedding, 
reduced 

trophozoites, 
improved 
intestinal 
morphology  

C. 

parvum 

(Abd El 

Wahab et 
al., 2022) 

Citrus 
maxima  

Pomelo   Rutaceae  Phenols, 
Flavonoids, 
Alkaloids 

Soxhlet and 
hydro 
distillation  

Aqueous   50 and 
100mg/kg  

In vivo Mice  Interfere with 
lectin 
receptors, 

immunomodul
atory  

Reduced 
oocyst 
shedding, 

improved 
morphology, 
and increased 

IFN-γ in 

infected host 

C. 
parvum 

(Hafez and 
Hamed, 
2021) 

Cichorium 

intybus 

Chicory   Asteraceae  Coumarins, 

flavonoids 

Hydrodis-

tillation  

Dimethyl 

sulpho-
xide. 
methanol 

9.375-300 

μg/mL 

Parasite 

growth 
inhibito
ry assay, 

Human Antioxidant, 

anti-
inflammatory 

Inhibition of C. 

parvum adult 
and its 
trophozoite 

C. 

parvum 

(Woolsey 

et al., 2019) 
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trophoz

oite 

invasion 
inhibitio
n assay 

(In vitro) 

stage 

Cinnamom
um verum  

Cinnamo
n   

Lauraceae  Flavonoids 
and 
sulphoid 

compounds 

Hydrodis-
tillation  

Methanol  500g/kg/da
y 

In vivo Mice  Antioxidant Reduced 
parasitic 
growth and 

oocyst 
shedding, 
reduced 

trophozoite 
development  

C. 
parvum 

(Woolsey 
et al., 2019) 

Echinacea 

purpurea  

Echinacea  Asteraceae Alkaloids, 

caffeic acid 
derivatives, 
polysacchar

ides 

Hydrodis-

tillation  

Aqueous  100mg/kg/

day 

In vivo Mice Antioxidant 

and anti-
inflammatory 

Reduced 

oocyst 
shedding and 
improved 

intestinal 
morphology, 
reduced IL-17 

and COX-2 in 
the intestinal 
epithelium 

C. 

parvum 

(Marwa et 

al., 2018) 

Ferula 

asafoetida  

Ferula  Umbelliferae  Phenolics, 

terpenes, 
coumarins 

Hydrodistillat

ion  

Methanol  5%  In vivo Mice  Antioxidant  Marked 

reduction in 
oocyst 
shedding 

C. 

parvum 

(Abdelmaks

oud et al., 
2020) 

Ficus 
carica 

common 
figs 

Moraceae  Flavonoids, 
phenols, 
tannins 

Hydrodistillat
ion  

Methanol  200mg/kg/
day 

In vivo Mice  Free radical 
scavenging and 
antioxidant 

properties 

Marked 
reduction in 
oocyst 

shedding, 
increased 
plasma level of 

glutathione 

peroxidase, 
catalase, and 
superoxide 

dismutase 

C. 
parvum 

(Abd El-
Hamed et 
al., 2021) 

Matricaria 
chamomilla 

Chamomile  Asteraceae  Organic 
acids, 

flavonoids, 
coumarins 

Hydrodis-
tillation  

Aqueous  1000mg/kg
/day 

In vivo Mice  Antioxidant 
and anti-

inflammatory 

67.2% 
reduction in 

oocyst 
shedding  

C. 
parvum 

(Taha et al., 
2023) 

Mentha 

piperita  

Pepper-

mint  
Lamiaceae  

Menthol, 
menthone, 

and iso 
menthone 

Hydrodis-

tillation  

Aqueous 20mg/kg/ 

day  

In vivo Mice  Antioxidant  74.7 reduction 

in oocyst 
shedding, 
reduction in 

malondialdehy
de, increase in 
superoxide 

dismutase 

C. 

parvum 

(Taha et al., 

2023) 

Mangifera 

indica  

Mango  Anacar-

diaceae   

Mangiferin, 

Rutin, 
epicatechin, 

organic 
acids, 
vitamins, 

phenols 

Hydrodis-

tillation  

Aqueous 40µg/100m

L  

In vitro Mice  Antioxidant, 

immunomodul
atory 

properties 

Marked 

reduction in 
oocyst 

shedding 

C. 

parvum 

(Tarantino 

et al., 2004) 

Moringa 
oleifera  

Drum 
stick 

Moringaceae  Flavonoids, 
alkaloids, 

steroids, 
tannins 

Hydrodis-
tillation, 

Soxhlet  

Methanol  300mg/kg/
day 

In vitro 
and in 

vivo 

Mice  Interfere with 
lectin 

receptors, 
antioxidants, 
immuno-

modulators 

91.8% 
reduction in 

oocyst 
shedding, 
increased 

interferon 
level in 
infected mice,  

C. 
parvum 

(El-Sayed 
and Fathy, 

2019) 

 Nigella 
sativa  

Black 
cumin  

Ranuncula-
ceae  

Phenols, 
thymoquin
one 

Hydrodis-
tillation  

Methanol  1.25mg/kg/
day 

In vivo Mice   Antioxidant 
and anti-
inflammatory 

Marked 
reduction in 
oocyst 

shedding, 

improvement 
and 
histological 

changes in 
ileum  

C. 
parvum 

(Sadek et 
al., 2020) 

Ocimum 

basilicum  

Basil  Lamiaceae Eugenol, 

rosamarinic 
acid,  

Hydrodistillat

ion  

Aqueous  500mg/kg/

day 

In vivo Mice  Antioxidant 

and anti-
inflammatory 

68.2% 

reduction in 
oocysts 

C. 

parvum 

(Taha et al., 

2023) 
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shedding, 

improved 

intestinal 
morphology 

Olea 

europaea  

Olive  Oleaceae  Flavonoids, 

phenols, 
tannins  

Hydrodis-

tillation  

Methanol  200mg/kg/

day 

In vivo  Mice  Free radical 

scavenging and 
antioxidant 
properties 

Reduction in 

oocyst 
shedding, 
increased 
plasma level of 

glutathione 
peroxidase, 
catalase, and 

superoxide 
dismutase 

C. 

parvum 

(Abd El-

Hamed et 
al., 2021) 

Origanum 

vulgare  

Origanum  Lamiaceae  Phenols 

(carvacrol), 
tannins, 
terpenoids 

Hydrodis-

tillation  

Aqueous  7-

1000 μg/m
L and 
30mg/kg/ 

day 

In vitro, 

in vivo 

Humans, 

mice 

Antioxidant 

and anti-
inflammatory  

Alter ion 

channel and 
enzyme 
actions, 

reduced 
oocyst 
shedding 

C. 

parvum, 
C. 
hominis 

(Almoradie 

et al., 2018) 

Punica 
granatum  

Pomegran
ate  

Lythraceae  Phenols 
(anthocyani
ns), 
flavonoids 

and tannins 

Hydrodis-
tillation  

Methanol  40μg and 

50-
100mg/kg  

In vitro 
and in 
vivo 

Mice  Antioxidant, 
immunomodul
atory 
properties 

Reduced 
oocyst 
shedding, 
alteration in 

villus 
morphology 

C. 
parvum 

(Weyl-
Feinstein et 
al., 2014) 

Panax 

ginseng  

Ginseng  Araliaceae  Phenols  Hydrodis-

tillation  

Methanol  100mg/kg/

day 

In vivo Mice  Interacts with 

glycoproteins 
of epithelium 
and alters 

them  

93% reduction 

in oocyst 
shedding 

C. 

parvum  

(Abouelsou

ed et al., 
2020) 

Salvia 
officinalis  

Sage  Lamiaceae  Oleic acid, 
flavonoids, 

chlorogenic 

acid  

Hydrodis-
tillation  

Methanol  50-
100mg/kg/

day 

In vivo Mice  Antioxidant 
and anti-

inflammatory 

91.8% 
reduction in 

oocyst 

shedding  

C. 
parvum 

(Abouelsou
ed et al., 

2020) 

Silybum 
marianum  

Thistle  Asteraceae  

Silymarin  

Hydrodis-
tillation  

Aqueous  50mg/L In vivo Mice  Antioxidant 
and anti-

inflammatory  

Marked 
reduction in 

oocyst 
shedding  

C. 
parvum 

(Namazi 
and Razavi, 

2024) 

Syzygium 

aromaticu
m  

Clove  Myrtaceae  Phenols 

(carvacrol) 

Hydrodis-

tillation  

Aqueous  33mg/kg In vivo Mice  Antioxidant 

and anti-
inflammatory 

74.65% 

reduction in 
oocyst 
shedding 

C. 

parvum 

(Gaber et 

al., 2022) 

Thymus 
vulgarus 

Thyme   Lamiaceae  Thymol, p- 
cymene, 
carvacrol  

Hydrodis-
tillation  

- 15μg/kg/ 

day 

In vivo 
and in 
vitro 

Humans 
and mice  

Antioxidant 
and anti-
inflammatory  

67.2% 
reduction in 
oocyst 

shedding and 
parasitic 
colonization, 

improved 
intestinal 

morphology 

C. 
parvum 

(Taha et al., 
2023) 

Vaccinium 

myrtillus  

Blue-

berries  

 Ericaceae  polyphenols 

(anthocyani
ns) 

Solid phase 

extraction 

Aqueous  167 and 

213μg 

Oocyst 

excystat
ion 
assay  

Laborat

ory  

Antioxidant  Reduced 

oocyst and 
trophozoite 
colonization 

C. 

parvum 

(Almoradie 

et al., 2018) 

Viscum 
album  

Mistletoe  Santalaceae  Phenolics 
and 
terpenes  

Hydrodis-
tillation  

Water, 
ethanolic  

750-
1000mg/kg
/day 

In vivo mice Antioxidant  50% reduction 
in oocyst 
shedding  

C. 
parvum 

(Obiad et 
al., 2012) 

Zingiber 
officinale  

Ginger  Zingiberace
ae  

Phenols, 
gingerol, 
terpenes, 

zingiberene 

Hydrodis-
tillatation  

Ethane  100mg/kg/
day 

In vivo Mice  Antioxidants 
and anti-
inflammatory 

93.8% 
reduction in 
oocyst 

shedding  

C. 
parvum 

(Abouelsou
ed et al., 
2020) 

Zygophall
um fabago 

Syrian 
bean 

caper  

Zygo-
phallaceae  

Phenols, 
alkaloids, 

glycosides 

Hydrodis-
tillation  

Aqueous  1.5-

5mg/mL  
In vivo Sheep, 

goat, 

cow, 
chicken 

Antioxidants, 
alter ion 

channels and 
enzyme 
actions 

Marked 
reduction in 

oocyst 
shedding. 
Improved 

intestinal 

morphology  

C. 
parvum 

(Namazi 
and Razavi, 

2024) 

Conclusions and future perspectives: To find new 

medications and lead compounds, this study concentrated 

on research that assessed plants and plant derivatives as 

anti-cryptosporidiosis medicines. The development of 

targeted formulations, including oral, injectable, and 

nanoparticle-based delivery systems, holds great promise 

for increasing the efficacy of plant extracts against 

Cryptosporidium. Innovative nanoparticle-based drug 
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delivery can enhance bioavailability, stability, and 

targeted action while minimizing the required dosage and 

potential side effects. However, the importance of clinical 

trials and safety validation cannot be compromised. 

Preclinical and clinical studies are very necessary to 

ensure the efficacy, optimal dosage, and safety of plant-

based therapeutics. Additionally, regulatory challenges 

remain a significant hurdle because standardization, 

quality control, and approval processes for plant-derived 

treatments are complex and vary across the globe.  

Overall, the findings of these experiments provide 

insightful data about bioassays that can guide the 

development of new research projects concerning 

procedures, dosages, and experimental setups. According 

to this review, plants and chemicals derived from plants 

have a major impact on protozoans, especially 

Cryptosporidium, both in vitro and in vivo. Broad-

spectrum antiparasitic medications and several plant 

extracts have demonstrated comparable benefits. 

Although this component needs more research, the 

traditional use of plants offers vital evidence for finding 

and creating synergistic medications. 

Exploration of plants and derivatives of plants as 

potential candidates for novel treatment of 

Cryptosporidium infection are encouraged in the studies 

reviewed here.  In vitro, research results should be 

converted into in vitro trials for more optimal and 

authentic results.  To prove efficacy and safety, trials on 

successful animals, with the newly studied compounds 

separately and with the already proven anti-parasitic 

drugs, are required. The combined effects of plant extracts 

against parasites should also be taken into consideration in 

future research studies. A study on the molecular 

mechanism of these plant extracts and their bioactive 

compounds is required. 

Plant products motivate synthesizing equivalents with 

boosted pharmacological properties, leading to new drug 

contenders in the development pipeline. Many plants with 

proven anti-Cryptosporidium properties have not yet been 

considered for experimental conditions. Several such 

unexamined plants may be potential candidates for 

valuable pharmacologically active substances against 

parasites and a bid for future research. 
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