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 Adrenal gland size is linked to its function, disease status, and tumor malignancy, if 

any, making accurate measurement of its size essential. However, measuring 

adrenal gland length is prone to errors, and volume is a reliable indicator of its size. 

Manual volume measurement is time-consuming and is usually inaccurate. 

Therefore, this study aimed to develop an artificial intelligence (AI) model for 

direct adrenal gland volume measurement in computed tomography (CT) images. 

Post-contrast CT images of 250 dogs were segmented. Of these, 200 scans were 

randomly selected for training and 50 for validation. A deep learning model, based 

on Swin-Transformers and several processing techniques, was developed. 

Computed tomography images of 239 dogs were used for normal reference 

definition, with adrenal gland volume was determined on the basis of the absence of 

adrenal gland lesions supported by clinical and laboratory data. The mean (±SD) 

Dice Similarity Coefficient (DSC) of adrenal gland segmentation was 0.885±0.075, 

which is slightly lower than other abdominal organs of dogs, most probably due to 

the small size, varied shapes, and overlapping with surrounding tissue. Agreement 

analysis between manual voxel counts and the AI model showed an interclass 

correlation coefficient of 0.957 (P<0.001). Adrenal gland volume correlated 

positively with body weight (BW; r=0.821, P<0.001) and age (r=0.147, P<0.05), 

and negatively with body condition score (BCS; r=-0.233, P<0.001). The 

relationship was represented by the regression equation: adrenal volume=-

0.51xBCS+0.033×BW+0.015×age+0.373 ( =0.72, P<0.001). No correlation 

was found between adrenal gland volume and sex of dogs. In conclusion, an AI 

model was developed to directly measure adrenal gland volume from CT images of 

dogs, which would potentially aid in adrenal disease screening. 
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INTRODUCTION 

 

The size of the adrenal gland, together with 

hormone tests, is an important indicator of adrenal gland 

diseases and is associated with the functionality and 

malignancy of adrenal tumors (Besso et al., 1997). A 

small adrenal gland may suggest Addison’s disease, 

while an enlarged adrenal gland may raise the suspicion 

of pituitary-dependent hypercortisolism or presence of 

tumors. Adrenal gland diseases are relatively common in 

dogs, with most adrenal tumors being malignant (de 

Bruin et al., 2009). 

The adrenal glands exhibit diverse shapes, 

typically peanut-shaped on the left side and V-shaped 

on the right. Measuring only the thickness or length of 

the gland may lead to inaccuracies, making volumetric 

measurements necessary for precise assessment of its 

enlargement. 

Imaging examination is crucial for the early diagnosis 

and assessment of the status of abnormalities of the gland. 

Ultrasonography, a non-invasive technique, allows for the 

evaluation of adrenal glands without anesthesia. However, 

it has limitations in visualizing the entire adrenal glands 

due to surrounding tissues, and obtaining a midsagittal 

view may result in overestimating adrenal gland size 

(Swepson et al., 2022). Moreover, ultrasound 

measurements can vary depending on operator’s skill and 

quality of the image.  
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Computed tomography (CT) provides simultaneous 

evaluation of both adrenal glands, including attenuation 

values that indicate tissue density and contrast 

enhancement. It offers the advantage of repeatable 

adrenal gland measurements and volume calculation. 

Additionally, previous research has demonstrated a 

strong correlation between CT findings and 

histopathology of the adrenal gland in dogs (Gregori et 

al., 2015). However, direct volume measurement can be 

time-consuming, and there is low intra- and inter-

observer variability in measuring the length and 

diameter of the caudal pole of the adrenal gland (Perfetti 

et al., 2021). Incidentally, enlarged adrenal glands may 

go unnoticed by radiologists on CT images due to their 

small volume (Kim et al., 2023). Investigations on deep 

learning models seem necessary to improve clinical 

decision-making by allowing early detection of adrenal 

diseases through fast and accurate measurements, 

ensuring consistent monitoring with reliable and 

reproducible results, aiding in tracking disease 

progression and treatment effectiveness, improving 

diagnostic accuracy by minimizing human error, and 

supporting personalized treatment to enable tailored care 

for affected animals. A deep learning model is a 

complex computational model that processes large 

amounts of information. It can recognize complex 

pictures, text, sounds, and other data patterns to produce 

accurate insights and predictions.  

Recent studies in humans have utilized deep 

learning model to recognize adrenal glands in CT images 

and directly calculate their volume (Kim et al., 2023; 

Robinson-Weiss et al., 2023; Li et al., 2024). Compared 

to humans, animals have diverse species with wide organ 

size variation, even within the same species, which 

makes it challenging to train veterinarians in deep 

learning models. Therefore, research on deep learning 

models related to adrenal gland volume estimation in 

veterinary medicine is limited. While earlier studies 

suggested no differences in adrenal volume among 

various body weight classes (Bertolini et al., 2006), 

recent studies have shown a correlation between body 

weight and adrenal volume in dogs (Bertolini et al., 

2008; Swepson et al., 2022). Despite this, there is a lack 

of deep learning research in veterinary medicine for 

direct measurement of adrenal gland volume in CT 

images, as existing studies rely on manually delineating 

regions of interest on all sections of CT scans (Bertolini 

et al., 2006; Swepson et al., 2022).  

This study aimed to develop an AI model that can 

measure adrenal gland volume quickly and accurately in 

order to facilitate the early diagnosis of adrenal 

disorders, which are relatively common and often 

discovered incidentally in dogs. Attempts were also 

made to determine reference ranges for adrenal gland 

volume in clinically healthy dogs based on body weight. 

Additionally, correlations of body weight (BW), body 

condition score (BCS), sex, and age of dogs with adrenal 

gland volume were also explored. It was hypothesized 

that a deep learning model can accurately measure 

adrenal gland volume from CT images and that adrenal 

gland volume would show reasonable correlations with 

body weight, body condition score (BCS), sex, and age 

in dogs. 

MATERIALS AND METHODS 

 

Deep learning model development 

CT dataset, manual segmentation and pre-processing: 

The CT scans from 250 dogs (during the period from 

2020 to 2023) across multiple centers were used with the 

dataset split 75:25, resulting in 200 dogs for training and 

the remaining 50 for validation. In total, 363,058 slices 

were analyzed. Dogs with history of increased appetite, 

higher water consumption, increased urination, or a pot-

bellied appearance were excluded. Similarly, animals with 

an isolated increase in ALP among liver enzyme activities 

or a Na:K ratio lower than 27:1 were also excluded. Only 

cases with no evidence of adrenal gland enlargement, as 

confirmed by three veterinary imaging residents, were 

included.  

On each slice of post-contrast axial CT images (Fig. 

1A), adrenal segmentation was performed by drawing the 

region of interest along the boundaries of both adrenal 

glands (Fig. 1B), using the MediLabel software, excluding 

the phrenico-abdominal vein and caudal vena cava adjacent 

to the adrenal glands. The accuracy of the region of interest 

(ROI) delineation was verified using the reconstructed 

dorsal view (dorsal views before and after segmentation are 

shown in Fig. 1D and Fig. 1E, respectively) and the 3D-

rendered view for the left (Fig. 1C) and the right adrenal 

gland (Fig. 1F). For deep learning model training, scans 

were pre-processed with voxel interpolation and intensity 

normalization. Unit voxel size was chosen as 

. Hounsfield 

unit (HU) values were clipped to a range of -50 to 500 and 

normalized to 0–1 to enhance contrast.  

 

Model architecture and implementation: A Swin-

transformer-based model (SwinUNETR-V2) was used for 

adrenal gland segmentation, which is a state-of-the-art 

model for CT segmentation (He et al., 2023). The input 

volume patch size was 

 voxels with 

one input and two output channel dimensions (background 

and adrenal glands). Intermediate feature dimension was 

set to 96, and block depths included four stages with one 

Swin-transformer layer per stage. Transformer heads were 

set to 3, 6, 12, and 24 for each stage, respectively. 

Instance normalization was applied to each layer, as 

described earlier (Huang and Belongie, 2017). The 

residual convolutional block from SwinUNETR-V2 was 

incorporated, as described previously (He et al., 2023). 

The overall architecture of the model is shown in Fig. 2. 

Deep learning model was implemented using the PyTorch 

and MONAI frameworks, as described earlier (Cardoso et 

al., 2022). The loss function combined dice loss and focal 

loss to address class imbalance caused by the small size of 

the adrenal gland (Ma et al., 2021). Basically, the dice loss 

function is widely adopted in medical image segmentation 

tasks. However, because the adrenal gland occupies a 

relatively small portion of the entire volume, the network 

cannot sufficiently focus on this small region using dice 

loss alone. Therefore, the focal loss function, a weighted 

version of cross-entropy, was incorporated to encourage the 

model to better focus on the small foreground object. The 

combined loss function was determined by using the 

following equations:  
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Fig. 1: Examples of the manually segmented adrenal glands. A and B are axial views, with A before segmentation and B after segmentation of adrenal 
glands shown in yellow color. D and E are dorsal views, with D before segmentation and E after segmentation of adrenal glands shown in yellow 

color. C and F are 3D rendered images, with C focusing on the left adrenal gland and F focusing on the right adrenal gland. 
 

 
 
Fig. 2: Graphical representation of the deep learning model. “Res-conv” denotes residual convolutional block, and “ST-block” represents the Swin-
Transformer block. The input volume was processed through encoder and decoder structures, and the processed features were finalized into 

segmentation result on the segmentation head (i.e., Seg-head). 
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where  is ground truth,  is predicted 

probability of the deep learning model, and  is focusing 

parameter to address class imbalance. In this study,  was 

emprically set to 2 by experiment. The model was 

optimized using the AdamW optimizer with a learning 

rate of  and weight decay of  for 100,000 steps 

(Loshchilov and Hutter, 2019).  

 

Post-processing and volume measuring: Segmented 

adrenal volumes were calculated by converting voxel 

counts into actual volumes using voxel spacing data. The 

conversion was conducted using the following formula: 

 
 

 

(4) 

 

where  is the number of voxels classified into adrenal 

glands and , ,  are the unit voxel sizes of the 

preprocessed data ( ). A smoothing process was 

applied using 3D slicer software to represent realistic 

gland surfaces. 

 

Model accuracy: The Dice similarity coefficient (DSC) 

was employed to assess the consistency between manual 

and automated segmentation. The DSC was calculated by 

using the following formula:  

 

 

 

Moreover, sensitivity, specificity, and mean absolute error 

(MAE) were also measured and have been described in 

the “results” section.       
 

Establishment of a normal reference range for adrenal 

gland volume:  

Computed Tomography dataset: Of the original 250 

dogs, 239 were included, excluding those with ambiguous 

boundaries between the liver and the adrenal glands. Dogs 

were classified into five groups according to their body 

weight (Table 1) and normal reference range for adrenal 

gland volume was determined for each body weight 

group.  

 

Statistical analysis: Data are shown as mean±SD. 

Kolmogorov-Smirnov test and Shapiro-Wilk tests were 

applied to assess normal distribution. ANOVA was 

applied to compare adrenal gland volume according to 

body weight, while the Kruskal-Wallis test was used to 

compare adrenal volume according to neutering status of 

dogs ((intact female, neutered female, intact male, 

neutered male). T-test was applied for comparison of 

adrenal volumes between two sexes (male vs female) 

and two neutering groups (intact vs neutered), while 

partial correlation and regression analyses were used to 

determine relationships between BCS, BW, age and 

adrenal volume. Pearson’s correlation coefficients were 

computed between left and right adrenal volumes. 

Multiple regression analysis was conducted using BW 

and age as independent variables, and adrenal gland 

volume as the dependent variable. To validate the 

regression model, the residuals were examined for 

normality and homoscedasticity. Adjusted R² was used 

to evaluate model fit, and variance inflation factors 

(VIFs) were checked to ensure no multicollinearity 

among the predictors. The Durbin-Watson statistic was 

calculated to evaluate the presence of autocorrelation in 

the residuals. A Durbin-Watson statistic value close to 2 

indicated that there were no significant autocorrelations 

in the residuals, confirming the independence of errors 

in the regression model. Confidence intervals for the 

regression coefficients were calculated at a 95% 

confidence level to assess the precision of the estimates. 

 
Table 1: Adrenal gland volumes (Means ± SD) for class of body weight 

groups and side effects 

Parameter Body weight level 

(kg) 

Volume  

(  

95% reference 

intervals  

Scheffe 

BW group** 
(n=239) 

A; ≤ 2.5 (n=32)   0.22±0.10 0.19-0.26 A, B vs 
C vs D 

vs E  

B; >2.5-5 (n=80) 0.33±0.11 0.31-0.36 

C; >5-10 (n=62) 0.48±0.16 0.44-0.53 
D;>10-20 (n=38) 0.67±0.31 0.57-0.77 
E; >20-40 (n=27) 1.11±0.36 0.96-1.25 

SideNS 

(n=478) 

Left (n=239) 0.52±0.32  

Right (n=239) 0.49±0.35 

** Significant intergroup differences on ANOVA (P<0.001). NSNon-

significant intergroup differences on Pearson’s correlation coefficients. 

 
RESULTS 

 

Total adrenal gland volume agreement analysis: The 

statistical comparison of total adrenal volume between 

the deep learning model and the manual voxel counting 

method showed high similarity based on the Pearson’s 

correlation coefficients (Fig. 3). The intraclass 

correlation coefficient (ICC) for perfect agreement 

between the two methods was 0.957 (95% CI: 0.924-

0.975, P<0.001). 

 

 

 
Fig. 3: Pearson correlation analysis between volume measurements 
from manual method and deep-learning model. The manually estimated 
volume and the directly measured volume using the deep learning 

model exhibited a strong Pearson’s correlation coefficient (r=0.922, 

=0.851, P<0.001). 
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Fig. 4: Samples of the automatically segmented results produced by the deep learning model. Green and red contours represent ground-truth and 

predicted adrenal glands, respectively (Left gland: A, E, I; Right gland: B, F, J). 3D renderings of the ground-truth (C, G, K) and prediction (D, H, L) are 
also shown. Orange rectangles in A, B, E, F, I, J highlight the magnified areas. 

 

Accuracy and the time consumption for direct 

estimation of adrenal gland volume: In order to assess the 

model’s performance, the DSC was calculated for 50 test 

sets comparing manual and automated segmentations. The 

DSC was 0.885±0.075. Fig. 4 illustrates the adrenal glands 

identified by the manual method and the automated 

method. Figs. 4A, 4E, and 4I represent the left adrenal 

gland, while Figs. 4B, 4F, and 4J show the right adrenal 

gland. Figs. 4C, 4G, and 4K depict the manual method, and 

Figs. 4D, 4H, and 4L represent the automated method in 3D 

rendering. The sensitivity and specificity of the estimations 

of adrenal gland volume by automated method were 

0.759±0.152 and 0.999±0.001, respectively. The measured 

MAE was 0.004±0.002. These quantitative assessments 

consistently indicate the high accuracy of the trained model. 

The average time required for direct estimation of 

adrenal gland volume in the validation set was 2.53 

seconds per dog, whereas the manual segmentation 

approach required approximately 25 minutes per dog. 

Thus, the time required for the estimation of adrenal gland 

volume by manual method was about 592 times higher 

than that required by direct method. 

 
Adrenal gland volume in normal dogs: Both the left and 

right adrenal glands were visible in all 239 dogs, yielding 

a total of 478 glands. The differences in the volumes of 

the left and right adrenal glands were statistically non-

significant. The mean adrenal gland volumes for each BW 

group are summarized in Table 1. The adrenal gland 

volume increased with BW, and ANOVA revealed a 

significant difference (P<0.001) between the BW groups, 

except between groups A (BW≤2.5) and B (BW>2.5-5.0), 

as shown in Table 1. The Pearson correlation coefficient 

(r) between adrenal gland volume and BW was 0.821 

(P<0.001).  
The relationship of BW and age with adrenal volume 

was expressed by the following regression equation: adrenal 

volume=0.033×BW+0.014×age+0.092( =0.70, =0.7
0; P<0.001) (Fig. 5A). The correlation between adrenal 
gland volume and BW was represented by the following 
formula: adrenal gland volume=0.032×BW+0.213 

( =0.67, =0.67, P<0.001).  
The data on mean age, BW, and adrenal volume of 

neutered females, intact females, neutered males, and 
intact males are presented in Table 2. The Kruskal-Wallis 
test indicated statistically non-significant difference in 
mean adrenal gland volume among the dogs of four 
groups. The t-test comparing adrenal volumes between 
neutered and intact dogs, as well as between female and 
male dogs, showed non-significant differences.    

The correlation between age of the dog and adrenal 
volume was evaluated using Pearson’s correlation 
analysis, revealing a weak positive correlation (r=0.147, 
P<0.05). The correlation between BCS and volume, while 
controlling for the influences of BW and age, was 
assessed using partial correlation analysis, which showed 
a weak negative correlation (r=-0.233, P<0.001). This 
relationship was expressed in the following regression 
equation: Adrenal volume=-0.51xBCS+0.033×BW+ 

0.015×age+0.373 ( ^=0.72, P<0.001), as shown in 
Fig. 5B.  
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Fig. 5: Scatter plots from the multiple regression analysis are presented. A: Multiple regression analysis of the relationship between BW, Age, and 

adrenal gland volume, expressed by the equation: adrenal volume=0.033xBW+0.014xAge+0.092 ( =0.70, P<0.001). B: Multiple regression 

analysis of the relationship between BW, BCS, and adrenal gland volume, expressed by the equation: Adrenal volume=-
0.51xBCS+0.033xBW+0.015xAge+0.373 (adjR2=0.72, P<0.001). BW, body weight; BCS, body condition score. 

 
Table 2: Data for each group, such as the number of dogs, mean age, mean BW, and mean adrenal volume  

Median (IQR) Neutered female   Intact female Neutered male Intact male 

Number of dogs (n) 86 24 113 16 

Age (years) 9.75(7.0-12.0) 8.04(3.21-11.50) 9.00 (5.33-11.08) 7.50 (5.29-9.09) 
BW (kg) 4.55(2.85-8.80) 7.25(2.85-16.50) 5.35 (3.80-9.20) 17.78 (5.30-21.45) 

 

0.38(0.29-0.51) 0.44 (0.27-0.74) 0.40 (0.30-0.57) 0.73 (0.35-0.90) 

* Non-significant intergroup differences on Kruskal-Wallis test. 

 

Residual analysis confirmed that the regression model 

met assumptions of linearity, normality, and 

homoscedasticity. Additionally, VIFs for all predictors 

were 1.00, suggesting no concerns with multicollinearity. 

The confidence intervals for the regression coefficients 

were narrow and did not include zero, indicating precise 

and statistically significant estimates for all predictors. 

There was no difference in adrenal gland volume before 

and after the smoothing process. Additionally, statistically 

non-significant difference was observed when the spacing 

was fixed at 0.75 during post-processing compared to 

situation when it was not fixed. 

 

DISCUSSION 
 

In this study, a Swin-Transformer-based 

segmentation model was employed for accurate 

segmentation of the adrenal glands. However, 

convolutional neural networks (CNNs), such as nnU-Net 

(Isensee et al., 2021), have been widely used. Recent 

studies have demonstrated that Transformer-based 

segmentation models can be highly effective for various 

medical images segmentation tasks, particularly when 

large-scale datasets are available (Hatamizadeh et al., 

2021). Given that we collected a relatively large dataset, 

this study adopted a Transformer-based approach for 

adrenal gland segmentation, achieving high accuracy in 

volume determination. Nevertheless, as indicated in a 

recent comparative study (Isensee et al., 2024), the 

performance superiority between CNN-based and 

Transformer-based models depends on specific tasks and 

dataset size. Thus, a comprehensive comparison involving 

different models and varying dataset sizes would be 

valuable to explore in future research. 

In the present study, the deep learning model showed 

high similarity with the manual method in segmentation 

and volume measurement of the adrenal gland (r=0.922, 

P<0.001). Only two data points showed low correlation: 

where most of the right adrenal gland was overlapped by 

the liver. In previous studies, the Dice Similarity 

Coefficient (DSC) was 0.915 in a deep learning model for 

kidney recognition in dog CT images (Ji et al., 2022), and 

0.93 in a model for eye recognition (Park et al., 2021). In 

our study, DSC was slightly lower (0.885±0.075) than 

other organs, most probably because the adrenal glands 

are smaller, vary in shape, and are often overlapped by the 

surrounding tissues.   

In order to address the factors contributing to the 

relatively lower DSC observed in this study, two potential 

strategies can be proposed. First, the implementation of a 

multi-scale approach could help overcome the challenge 

posed by the small size of the adrenal glands. By utilizing 

multiple scales, the model could more effectively capture 

both fine details and larger anatomical structures, which is 

particularly important when working with small and 

variable-sized organs such as the adrenal glands. Second, 

expanding the dataset to include a broader and more 

diverse population of dogs, encompassing a wider range 

of adrenal gland sizes and shapes, would enhance ability 

of the model to generalize across individual variations. 

This would likely improve robustness and overall 

performance of the model. We believe that the adoption of 

these strategies would address some of the limitations 

encountered in this study and could lead to substantial 

improvements in the DSC in future iterations of the 

model. In a recent study of deep learning model for 

adrenal gland detection in human medicine, the DSC was 

0.7009, and the ICC between the manual and automatic 
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methods was 0.91 (Kim et al., 2023). Compared to 

clinical medical imaging results, our model achieved a 

higher DSC.  

In this study, the deep learning model obtained adrenal 

volumes from CT images 592 times faster than the manual 

method (2.53 sec V 25.0 minutes), significantly reducing 

clinicians’ time. Adrenal gland volume is a reliable 

indicator for the early diagnosis of adrenal diseases, 

offering an advantage over length measurements. However, 

this study showed that the manual calculation of the volume 

of a single adrenal gland required approximately 25 

minutes, making it impractical for clinical use. In contrast, 

deep learning can determine the adrenal gland volume in 

just 2.53 seconds, enabling measurements in a larger 

number of dogs. This enhances the efficiency of clinical 

practice, allows for earlier detection of diseases, facilitates 

individualized treatment plans and supports consistent 

monitoring, thereby improving its clinical value. Further 

studies are suggested to reduce computational complexity 

and improve execution time by employing lightweight deep 

neural networks and model compression techniques (Cho et 

al., 2023, 2024). These techniques could accelerate the 

deep learning models, enabling quasi-realtime analysis of 

CT images. 

In this study, adrenal gland volume showed a 

significant positive correlation with BW (r=0.821; 

P<0.05), consistent with previous studies (Swepson et al., 

2022; Büttelmann et al., 2023). Except for groups A (BW 

≤2.5kg) and B (BW >2.5-5.0kg), adrenal gland volume 

differed significantly among all BW groups, possibly 

because most dogs (19 of 32 dogs) in Group A weighed 

more than 2kg, while 12 of 80 dogs in Group B fell within 

the 2.5kg to 3.0kg range. Given that the adrenal gland is a 

very small organ, this may have played a significant role. 

However, considering that the average adrenal volume in 

Group A is 0.22  and in Group B it is 0.33 , if 

smaller dogs had been included in group A, there would 

have been statistically significant difference between dogs 

of groups A and B. 

To the best of our knowledge, there have been no 

studies examining the relationship between BCS and 

adrenal gland volume in dogs. In this study, a weak 

negative correlation was found between BCS and adrenal 

gland volume. This suggests that for two dogs of the same 

body weight, a small-breed dog with a high BCS and a 

large-breed dog with a low BCS, the adrenal volume 

would be higher in the large-breed dog with a lower BCS. 

Therefore, adrenal gland volume is not influenced solely 

by body weight, and BCS should also be considered. 

A previous study on 48 dogs (Bertolini et al., 2006) 

has shown that the left adrenal gland has a higher volume 

than the right. However, in the present study, non-

significant difference was observed in the volume of the 

left and right adrenal glands. This discrepancy could be 

attributed to differences in study design, sample size, or 

the specific population of dogs studied. Additionally, 

factors such as breed, age, or health conditions of dogs 

could also influence adrenal gland size, which may vary 

across different studies. Further research with a larger 

sample size and a more diverse population is needed to 

confirm these findings.  

The relationship between age and adrenal gland size 

remains controversial in veterinary ultrasound research. 

Previous studies involving 49 (Bertolini et al., 2008) and 

62 dogs (Barthez et al., 1995) did not find any correlation 

between age and adrenal gland size on ultrasound. 

However, other studies have identified a weak positive 

correlation between age and adrenal gland thickness (De 

Chalus et al., 2013; Bento et al., 2016). In our study, 

adrenal gland volume increased with age, similar to the 

findings in human studies, and it is thought that adrenal 

cortex atrophy occurs with age, while compensatory 

hyperplasia results in increased adrenal gland volume 

(Hornsby, 2002; Meier et al., 2007). The weak correlation 

observed in this study suggests that BCS and age alone 

may not be a reliable predictor of adrenal gland size in 

dogs. However, when considered together with BW, BCS 

and age could contribute to a more accurate estimation of 

adrenal volume, highlighting the complexity of the 

relationship between these factors. 

In this study, we present a regression model using 

BW, age, and BCS, which demonstrated high predictive 

power and statistical reliability. By comparing the 

measured adrenal gland volume with the expected volume 

for individual subjects based on the regression model, this 

model could enhance confidence in the process of 

diagnosing adrenal diseases based on CT findings and 

clinical information. 

In veterinary medicine, the relationship between sex 

and adrenal gland size is also debated. Some studies 

report that adrenal gland is thicker in males than in 

females (Mogicato et al., 2011), while others claim the 

opposite (De Chalus et al., 2013). Some research 

suggests that sex is not related to adrenal size (Bento et 

al., 2016), while in our study, no correlation was 

observed between sex or neutering status of dogs and 

adrenal volume. This discrepancy may be explored 

further in future research. 

This study had certain limitations. Due to the 

retrospective nature of this study, definitive diagnostic 

methods for adrenal gland disease, such as Low Dose 

Dexamethasone Suppression Test (LDDST) or Urinary 

Cortisol Creatinine Ratio (UCCR), were not available for 

all patients. This means that some dogs with subclinical 

adrenal gland disease may have been included, potentially 

affecting the results. Similarly, the dataset is limited to 

dogs without evidence of adrenal gland enlargement, 

which may not fully represent the diversity of adrenal 

gland conditions observed in clinical practice. While the 

model performs well on the dataset used, its 

generalizability to other breeds, sizes, or conditions of 

dogs is not fully explored. Further validation on a more 

diverse dataset would strengthen conclusions of the study. 

Furthermore, the deep learning model, while effective, is 

computationally complex. Thus, future work is also 

suggested to reduce computational complexity and 

improve execution time, which would be beneficial for 

real-time clinical applications. 

 

Conclusions: In conclusion, the deep learning model 

established in our study could aid veterinarians in 

efficiently estimating adrenal gland volume from canine 

CT views. Additionally, this study also offers a reference 

range for adrenal gland volume in healthy dogs, 

accounting for BW, age, and BCS, which can be utilized 

in the clinical assessment of adrenal glands.  
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