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Intelligence caput femoris and the dorsocranial projection of the right and left acetabulum). In the
Norberg Angle study, the performance of all configurations of the YOLOvVS, YOLOvV9, YOLOvV10,

YOLOvI11, and YOLOvV12 object detection algorithms was systematically evaluated
in terms of precision, recall, mAP@50, and mAP50-95 metrics. According to the
evaluation results, YOLOvV11 achieved the best performance on the mAP50-95 metric
with a value of 0.95397, outperforming the other configurations. This was followed
by YOLOv8 (0.95245), YOLOV9 (0.95183), YOLOvV10 (0.95005), and YOLOv12
(0.93832), respectively. In the mAP@50 analysis, the ranking was identified as
YOLOv8 (0.99409), YOLOV9 (0.99386), YOLOvl1l (0.99355), YOLOvI2
(0.99345), and YOLOV10 (0.9933). This study concludes that artificial intelligence
is a reliable alternative for diagnosing hip dysplasia in dogs. It has been found to be
a more practical and accurate diagnostic method.
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INTRODUCTION

Hip dysplasia is a developmental disorder caused by a
discrepancy between the acetabulum and the femoral head
(Schachner and Lopez, 2015). An abnormal position of the
hip joint causes secondary osteoarthritis (Akula et al,
2022). Genetic and environmental factors form the basis of
hip dysplasia (Ginja et al., 2015; Schachner and Lopez,
2015). Hip dysplasia tends to occur most frequently in
large-breed dogs that grow fast (Loureiro et al., 2024).

In hip dysplasia, the cycle of degenerative joint
disease and bone remodeling continues. Cartilage
degeneration, thickening of the joint capsule, stretching
or rupture of the femoral head ligament, proliferation of
the dorsal acetabular rim, thickening of the femoral neck,
and local muscle atrophy are characteristic features of
advanced hip dysplasia. These disorders cause

mechanical stress during kinematic, static and dynamic
activities of the joint, resulting in significant functional
impairment among the various tissues and structures that
comprise the hip (Pinna et al., 2022). Although different
systems are used in the evaluation of hip dysplasia,
radiographic diagnosis of the acetabulum, femoral head
and its position in the acetabulum, femoral neck, joint
space and Norberg angle (NA) is taken into account and
is the gold standard (Schachner and Lopez, 2015).
Looseness, instability, and inflammation in the joint result
in hip joint degeneration, characterized by the formation
of osteophytes and exostoses. Hip dysplasia is scored,
graded, and evaluated based on these findings (Mikkola
et al., 2019; Aghapour et al., 2023). However, achieving
standardization in the assessment of hip dysplasia is quite
difficult. Examinations must be rigorous, well-defined,
and more objective (Santana ef al., 2021).
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In dogs, a Ventro-Dorsal (VD) hip radiograph is
taken, and hip dysplasia is assessed using the Norberg-
Olsson angle. During bilateral pelvic images, the tarsal
joints are rotated 15° medially, ensuring dorsal alignment
of the patellac. When measuring the Norberg-Olsson
angle, the centres of both femoral heads are marked. The
Norberg angle is the angle formed by the line between the
centres of both femurs and the line drawn from the
femoral centres of both hips to the cranial acetabular
margin (Comhaire and Schoonjans, 2011). Studies have
reported that the Norberg-Olsson angle is a reliable
method for diagnosing hip dysplasia and provides a guide
for interpreting hip radiographs (Ajadi ef al., 2018; Klever
et al., 2020).

With technological advancements, animal models,
innovative treatment methods, device developments, and
artificial intelligence-assisted imaging systems are being
used in the veterinary field (Choudhary 2025a). Artificial
intelligence (Al)-supported diagnostic systems improve
clinical examination, diagnosis, and treatment by analyzing
large data sets, increasing accuracy, and detecting subtle
anomalies and anatomical points (Choudhary et al,
2025b). As Al enables computer programs to analyze large
imaging datasets and perform tasks related to veterinary
diagnostic imaging, it has the potential to help meet the
growing need for radiologic services through workflow,
quality control, and image interpretation applications
(Fitzke et al., 2021).

Loureiro et al. (2024) developed a three-stage deep
learning-based system that can automatically determine
and measure the femoral neck thickness index. They
noted that there was no significant difference between the
system's measurements and those of the experts. Gomes
et al. (2021) used the Inception-V3 transfer model to
classify hip dysplasia. The data obtained indicated a 75%
accuracy rate, and Al was reported as an alternative
method for diagnosing hip dysplasia. In the literature, it
has been emphasized that Al is an important diagnostic
method in the field of radiology, that it is a strong
alternative with the time savings and standardization it
provides, and that comprehensive studies are necessary
(LeCun et al., 2015; Vinicki et al., 2018; Hennessey et
al., 2022). In this study, we aimed to develop a deep
learning-based application to improve and standardize the
diagnosis of hip dysplasia in dogs by analyzing Norberg-
Olsson measurements using the YOLO (You Only Look
Once) and HrNET (High Resolution Network)
algorithms.

MATERIALS AND METHODS

The study evaluated VD radiographs of 2,306 dogs
presented to the Surgery Department of Erciyes
University's Faculty of Veterinary Medicine between 2011
and 2025. Breed and gender were not considered in the
evaluated radiographs. Only pelvic VD radiographs from
dogs older than 12 months were included in the study.
Images from the acetabulum to the distal femur were
selected from DICOM (Digital Imaging and
Communications in Medicine) format, showing no
pathological lesions. Due to the retrospective and
observational nature of the study, ethics committee
approval and owner consent were not sought.
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Labelling: First, the region encompassing the femoral
head and acetabulum, as well as four critical anatomical
landmarks (the centre of the right and left femoral head
and the dorsocranial processes of the right and left
acetabulum), was identified on 2,306 radiographs. The
MKY application, a software we developed and made
openly available on the GitHub website, was used for
labelling. After labelling, the radiographic images were
randomly divided into groups: 70% (1614) for training,
15% (346) for validation, and 15% (346) for testing. The
training and test images were used to assess accuracy
during training, while the images in the validation dataset
were used to determine the overall map50-90 and map50
values, as well as to evaluate the extent to which the
points deviated from the expert-marked points. All
measurements were performed by MKY, UA, and NEA.
The datasets were prepared separately for training two
different models wusing the YOLO and HrNET
architectures. Intraclass correlation coefficient (ICC)
analysis was used to assess measurement consistency
among experts, with values ranging from 0 to 1. Bland-
Altman analysis was also performed to determine whether
there were systematic differences among experts and to
determine the limits within which 95% of measurement
differences fell.

Data Set Preparation: To prepare the dataset for YOLO
training, the coordinates of the region encompassing the
caput femoris and acetabulum were determined in
radiographic images, and the labelled coordinates were
converted to YOLO format. To prepare the HINET dataset,
the region encompassing the caput femoris and acetabulum
in each radiographic image was cut using Python software,
and the coordinates of the labelled points were calculated.
This ensured that the coordinate information was not
distorted and that the HrNET model focused solely on the
relevant anatomical region.

Study Design: After the labelling process, the overall
algorithm flow was performed in two stages. In the first
stage, the pelvic region was approximated using YOLO,
and in the second stage, an HrNET algorithm was
developed to calculate the NA. The aim was to determine
the model that most successfully detected the pelvis
among the YOLO models (YOLOv8-v12). Because
successfully labelling the four different points that will
determine the NA is critical for successful pelvic
detection, the HrNET structure was combined with the
Binary Heatmap method to compare the accuracy of the
points and angles (Fig. 1).

Training: Testing was performed using Windows 11,
16GB of RAM, and an NVIDIA GeForce GTX 1650Ti
GPU. Model training was conducted in Google Colab
utilizing 80GB of RAM and an A100 GPU. PyTorch
(2.0.1) and CUDA (11.8).

Training of YOLO: The YOLO architecture was
chosen for pelvic region detection due to its single-pass

detection approach, real-time processing
capability, and proven effectiveness in
medical applications (Ragap et al., 2024).



Fig I: Flow diagram of the study.

All models were trained for 40 epochs to ensure adequate
learning and adaptation. Batch size was set to 32, which
balances memory usage and processing speed. Images
were resized to 640x640 pixels. Model weights were
updated using Stochastic Gradient Descent (SGD)
optimization.

In the hyperparameter settings, the initial learning rate
was 0.01, and the final learning rate was 0.001. Momentum
was maintained at 0.937 across epochs, while weight
reduction of 0.0005 prevented overfitting. The training
process began with a 3-epoch warm-up phase using a
momentum value of 0.8. The following parameters were
used for data augmentation: hue shift (hsv_h=0.015),
saturation increase (hsv_s=0.7), brightness change
(hsv_v=0.4), horizontal flip (fliplr=0.5), and mosaic
increase (mosaic=1.0). Additionally, for data set
enrichment, images were subjected to +£3° random rotation,
+2° horizontal and vertical shearing, grayscale (hue value
+3°) for 4% of the images, saturation £3°, brightness £8°,
and random noise addition up to 0.26% of the pixels. For
geometric transformations, translation (translate=0.1) and
scaling (scale=0.5) were used.

HRNet Training

HRNet Architecture: In this study, the HrNET-18
backbone architecture was chosen for the precise
localization of four anatomical landmarks. This model was
used to generate 128x128 heatmaps for each target point
using a 512x512 input image. A 1x1 convolutional layer
was added to the output of the HrNET-18 backbone,
followed by a custom Binary Head Block containing Batch
Normalization and ReLU activation functions. In the final
layer, the 270-channel high-resolution feature map from
the last layer of HINET was converted to a 4-channel
output (one channel for each anatomical landmark) using
1x1 convolution. Probability values in the range [0-1] were
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calculated for each pixel in the heatmaps using sigmoid
activation following Zakareya et al. (2023).

Binary Heat Map: Instead of direct coordinate regression,
heat maps were used to map anatomical landmarks. This
approach enhanced localization accuracy by preserving
spatial information. The Binary Heat Map function (Table
1) assigned a single positive pixel to each anatomical
landmark. To increase the robustness of the model, noise
was randomly assigned to neighbouring coordinates in
proportion to the errors in the coordinates. This stochastic
approach enabled controlled noise injection during the
training process, strengthening the model's ability to detect
artefacts that may occur during X-ray imaging.

Table I: HRNet Binary Heat Map Parameters

Parameter Value Explanation

Heat Map Resolution  128x128 Pixel dimensions of the output Heat
Map

Positive Pixel Value 1.0 Pixel value at anatomical point
location

Negative Pixel Value 0.0 Value of background pixels

The Noise InjectionStochasticAssigning a random  neighbour

Technique Rounding coordinate  proportional to the
coordinate errors

Output CoordinateTop-k  Providing sub-pixel accuracy by taking

Calculation (k=9) the weighted average of the 9 pixels
with the highest activation
Positive Class Weight 100 The weight coefficient given to

positive pixels in the BCE loss function

Model Backbone HRNet -Network architecture that preserves
18 high-resolution features
Feature Channels 270 Number of channels of HRNet-18

output tensor



Coordinate Extraction: A new approach was developed to
obtain the final coordinates from the heat maps generated by
the trained model. A colour scale ranging from white to red
was used for Binary Heat Map point detection (Fig. 2B). The
pixels with the highest activation were weighted, and
coordinate extraction was performed at sub-pixel precision.
Red regions were identified as indicators of high activation
(Fig. 2C). The pixels with the highest k activation were
evaluated, and their weighted averages were calculated using
Softmax Scores as described by Liu (2025).

Loss Function: Implemented binary cross-entropy loss
function for binary heat map, which addresses class
imbalance using a positive weighting factor.

N
1
Ly.9) = _NZ [p-ilog log () + (1 —y) log log (1— ()]
i=1

Formula 1: Binary cross-entropy formula.

Here, y; represents the true binary label, ¥; notes the
predicted logarithmic value, a(+) is the sigmoid activation
function, and p refers to the positive class weighting factor.
This approach, where the positive weight factor was set to
100, made the few anatomical point pixels in the heat map
more evident than the background pixels. The AdamW
algorithm was used for optimization, and a weight decay
value of 0.01 was applied as the default. The model was
trained for 34 epochs using a one-cycle policy with a
maximum learning rate of 5e-4. Training was performed on
an NVIDIA A100 GPU and lasted for 42 minutes. Data

Original X-ray Image

Right Acetabulum Trace Map
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augmentation techniques were +10° rotation, 5-15%
scaling and £10% brightness adjustments. Horizontal flip
was intentionally disabled to preserve anatomical landmark

symmetry.
RESULTS

Pre-training heat map analysis: The binary heat map
generated before training revealed that the model had not
yet fully learned the anatomical structures. The activation
regions were broad and scattered. It was observed that
the pelvic joint positions were unclear, and high
activation values did not provide a precise localization.
Instead of critical anatomical landmarks such as the
acetabulum and femoral head, low-precision estimates
were distributed throughout a wide area of the pelvis.
This indicated that the untrained model had not yet
acquired the ability to determine the precise locations of
anatomical structures.

Post-training heat map and landmark detection: A
significant improvement was observed in the heat map after
training. The model was now able to detect each anatomical
landmark (left and right acetabulum, left and right femoral
head) with high accuracy. The activation regions became
sharp and focused, with the red regions indicating high
confidence, matching the exact locations of the target
anatomical structures. Background activation was almost
eliminated, leaving a concentrated activation pattern at
relevant points (Fig. 3).

Right Acetabulum - Zoomed View

Fig. 2: Point detection on the pelvis radiograph A) Original VD radiograph B) Heat map generated for the right femur, C) Weighted average of the

pixels with the highest activation, D) Marking of the detected points.
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Fig. 3: Binary heat map after training.

Comparative evaluation of YOLO models: In the study,
the performance of all configurations of the YOLOVS,
YOLOv9, YOLOv10, YOLOv1I1, and YOLOvVI2 object
detection algorithms was systematically evaluated in terms
of precision, recall, mAP@50, and mAP50-95 metrics.
According to the evaluation results, YOLOv11 achieved
the best performance on the mAP50-95 metric with a value
of 0.95397, outperforming the other configurations. This
was followed by YOLOVS (0.95245), YOLOV9 (0.95183),
YOLOv10 (0.95005), and YOLOvI12 (0.93832),
respectively. In the mAP@50 analysis, the ranking was
identified as YOLOVS (0.99409), YOLOvV9 (0.99386),
YOLOv11l (0.99355), YOLOvI2 (0.99345), and
YOLOv10 (0.9933).

When examining the precision metric, the YOLOv11
and YOLOvVI2 configurations demonstrated superior
accuracy performance with a value of 0.99174, followed
closely by YOLOv8 and YOLOvV9 at 0.99173. The
YOLOV10 model reached a value of 0.99172. In terms of
the recall metric, all models achieved an equal level of
success with a notable identical score of 0.99174.
Regarding computational efficiency, YOLOvVS8 exhibited
the fastest performance with a training time of 40.4
minutes, followed by YOLOv11 (44.4 minutes), YOLOvV9
(48.8 minutes), YOLOv10 (50.3 minutes), and YOLOv12
(56.1 minutes).

An analysis of the training processes of the models
revealed that YOLOvV9 had reached its optimal mAP50-95
value at an early stage, specifically at the 22nd epoch. At
the same time, YOLOv10 and YOLOvV12 achieved the
same level at the 38th epoch. YOLOvVS reached its peak
accuracy at the 31st epoch, and YOLOvI1 at the 37th
epoch. These findings highlight the correlation between
model complexity and convergence speed, particularly
demonstrating YOLOV9’s rapid optimization capability.
Additionally, the data indicated that despite its more

Detected Points

Left Femoral Head Heatmap
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complex architecture, YOLOv12 offered a lower validation
performance-efficiency balance compared to the other
models (Table 2).

Table 2: YOLO (You Only Look Once) Results

Metrics YOLOV8 YOLOV9 YOLOvIO YOLOvI| YOLOvI2
mAP50 0.99409 0.99386 0.9933 0.99355 0.99345
mAP50-95 0.95245 0.95183 0.95005 0.95397 0.93832
Precision 099173 099173 099172 099174 099174
Recall 099174 099174 099174 099174 099174

Training 40.4 48.8 50.3 44.4 56.1
Duration(min)

HrNET-based landmark detection: Detection was
performed using the HINET model, which was trained by
cropping 346 validation images from the YOLO vll
model. Thanks to the Binary Heat Map and high-resolution
network structure, the model's average pixel error was
determined to be 4.2866 pixels. The resulting RMSE (mean
pixel error) value was 4.7851 pixels, indicating a consistent
error distribution. The results of the detection process
revealed that detecting the caput femoris was relatively
more difficult than detecting the acetabulum (Table 3).

Table 3: Average pixel errors obtained for each anatomical point

Left Acetabulum 3.9561 pixel
Right Acetabulum 3.9699 pixel
Left Caput Femoris 4.7139 pixel
Right Caput Femoris 4.5066 pixel

Training process and loss analysis: The model showed a
sudden decrease in loss values within the first three epochs
(from 0.307212 to 0.008288). This indicated that our
proposed binary heat map approach and HrNET
architecture were able to learn anatomical landmarks
quickly and effectively. The lowest validation loss value
was recorded at 0.003585 in the 15th epoch. This epoch
was found to be the step with the highest generalization
ability of the model.
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Fig. 4: Bland-Altman table.

Validation of Al-estimated NA: The Bland-Altman plot
(Fig. 4) confirmed the agreement between the artificial
intelligence-estimated and manually measured NA. The
mean difference was determined to be -0.05° (95% CI: -
5.48° to 5.38°). This minimal deviation indicated that the
Al algorithm did not over or underestimate the NA. The
narrow limits of agreement (approximately +5.4°)
indicated high measurement precision across the entire
range of observed angles (60°-120°). 95.1% of all
measurement differences were observed to fall within the
limits of agreement. The distribution of differences was
symmetrical around the mean difference line, but a small
number of outliers were found to lie beyond the limits of
agreement. These outliers (n=17, 2.5% of all
measurements) were observed at the extremes of the
measurement range of the high (>110°) or low (<70°) NA.

Correlation between Al and manual NA
measurements: A strong positive correlation (R>=0.9507)
was observed between the estimated and manually
measured NA values. Regression analysis revealed
consistent performance across the clinically relevant NA
range (60°-130°). Right and left NA measurements (blue-
green, respectively) showed similar distribution patterns
along the line. (Fig. 5).

DISCUSSION

Current radiographic devices require manual labelling
and verification of anatomical points by veterinarians for
measuring the NA. To enhance the efficiency of this
process and make it smoother and faster, this study aims to
develop an Al application that can estimate the NA from
radiographic images.

Artificial intelligence technologies are effective in
processing large data sets and identifying complex patterns,
which is critical for improving diagnostic accuracy and
understanding disease mechanisms (Jacob et al, 2022;
Bouchemla et al., 2023; Akinsulie, 2024). Without Al, many
patterns may not be discovered because traditional methods
struggle to analyze the large amounts of data generated in
veterinary practice (Appleby and Basran, 2022; Kim et al.,
2022). By processing various data sources such as laboratory
results and diagnostic images, it provides a better
understanding of diseases and reduces the possibility of
misdiagnosis (Albadrani, 2024). It has been observed that
artificial intelligence in veterinary medicine is very effective
in diagnostic imaging. Joslyn and Alexander (2022) reported
that in research environments, it is possible to detect some
radiographic abnormalities in veterinary radiology with Al.
In the present study, radiographs of dogs were evaluated and

Predicted Angle (degrees)
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Actual vs Predicted Norberg Angle (R? = 0.9507)
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Fig. 5: Actual and predicted curve.

analyzed to diagnose hip dysplasia with the support of
artificial intelligence.

Lassalle et al. (2024) reported in their study evaluating
hip dysplasia with Al that manual measurements can lead
to errors and variability among observers. Consequently,
they found that the use of Al has the potential to increase
the reproducibility of measurements as part of
comprehensive pelvic evaluations and thus improve
diagnostic accuracy. Hansen et al. (2025) reported in their
study that Bland-Altman plots showed good agreement
between human and Al measurements when NA values
were greater than 80°. Franco-Gongalo et al. (2025)
developed an Al algorithm that measures the distance
between the center of the femoral head and the dorsal
acetabular rim. This developed system has enabled more
transparent and interpretable results in the assessment of
hip dysplasia. In our study, the results obtained from the
HrNET algorithm we used are consistent with those of
Lassalle ef al. (2024). The results obtained by using the
YOLOv11 and HrNET algorithms together are consistent
with the study by Hansen ef al. (2025) in terms of
minimizing inter-observer variability. Franco-Gongalo et
al. (2025) show parallels in terms of obtaining interpretable
results in the evaluation of hip dysplasia.

In the evaluation of radiographs, factors such as the
experience level and training, fatigue, lack of attention, or
intense working tempo of the observer are important
factors affecting the reliability of the evaluation. This
subjectivity leads to inconsistencies between individual
assessors (Pesapane et al., 2024). Early diagnosis of hip
dysplasia is critical for the breeding and genetic
development of dog breeds. In the present study, NAs were
measured using YOLO V8-9-10-11-12 and HrNET spine
architecture in VD pelvis radiographs in dogs. Thus, by
presenting an objective approach to evaluating hip
dysplasia, an Al algorithm was developed that remains
consistent regardless of the evaluator, provides fast and
standardized results, and enables the evaluation of a large
number of radiographs in a very short time period.

The primary difference between this study and other
studies in the literature is that two distinct Al architectures
are used in conjunction with each other. In this way, the
shortcomings of the two algorithms are largely overcome.
In the studies in the literature, either the YOLO algorithm
alone (Den et al, 2023) or the Convolutional Neural
Network (CNN) algorithm alone (Boufenar ef al., 2023) is
used. Within the scope of the presented study, six different
methods were compared using YOLO v8-9-10-11-12 and
HrNET architectures together.



Al is used in various ways to detect hip dysplasia
(Boufenar et al., 2023; Den et al., 2023). Methods based on
the detection of a specific anatomical landmark are more
frequently used in Al. Classification of hip dysplasia is
performed using acetabular index measurements (Sha et
al., 2023). In the presented study, NA was determined by
measuring the angle between the centre of the femoral head
and the dorsal rim of the acetabulum. The use of Al to
identify anatomical landmarks on pelvic radiographs is
similar to the study by Sha ef al. (2023).

McEvoy et al. (2013) reported that they used the
partial least squares discriminant analysis (PLS-DA) model
to identify pelvic joints. They reported a classification error
of 6.7%. In another study, the researchers scored hip
dysplasia using the YOLOvV3 Tiny NN application. They
emphasized that it demonstrated 53% sensitivity and 92%
specificity in the analysis of radiographs without hip
dysplasia and radiographs showing dysplastic features
(McEvoy et al. 2021). Similarly, Gomes et al. (2021)
investigated hip dysplasia diagnosis on VD radiographs
using an InceptionV3-based NN model. They reported that
the model achieved 75% accuracy and that its test
performance was adequate. The YOLO (8-9-10-11-12)
algorithm was used in the presented study. The analysis of
these algorithms compared the metrics of precision, recall,
mAP@50, and mAP50-95. As a result, the YOLOv11 and
YOLOv12 configurations showed superior accuracy
performance (0.99174), with a mean difference of -0.05°
(95% CI: -5.48° to 5.38°). These results demonstrate a
higher accuracy rate compared to the results obtained in the
studies of McEvoy et al. (2013), McEvoy et al. (2021), and
Gomes et al. (2021).

Boufenar et al. (2023) conducted radiographic
analyses using a CNN model in their study on dogs with
hip dysplasia. They noted that the 507 radiographic images
used were limited and that no expert support was received
during the study. Despite this, the best-performing VGG16
model achieved 98.32% accuracy, 98.35% recall, and
98.44% sensitivity. Consequently, they emphasized the
need to investigate larger and more complex models. Sezer
et al. (2020) demonstrated that pelvic ultrasound images
can be classified and segmented using CNN. They found
97.9% accuracy, 96.17% sensitivity (95% CI: 92.85%-
98.23%), and 98.02% specificity (95% CI: 96.39-99.05%)
in their classification. In our study, radiographic images
from 2,306 dogs were evaluated. The YOLOvI1 model
yielded the best results in terms of sensitivity (0.99174),
recall (0.99174), and accuracy (95%). In light of the
obtained data, it was concluded that larger data sets and
more complex models should be investigated. Our
observations align with the study conducted by Boufenar et
al. (2023) and Sezer et al. (2020) in terms of limitations
and results obtained.

In their study, Loureiro et al. (2024) developed a
model capable of measuring the femoral neck thickness
index in the Al diagnosis of hip dysplasia in dogs. In their
study, they found that the majority of the data points in the
Bland-Altman plot fell between -0.047 and 0.057. They
also determined a 95% confidence interval. In our study,
the mean difference between the artificial intelligence and
manual measurements in the Bland-Altman plot was -0.05°
(95% CI: -5.48° to 5.38°). This minimal deviation
demonstrated that the Al was consistent in measuring the
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NA. Although the methodology used in the presented study
differed from that of Loureiro et al. (2024), the confidence
interval and the data obtained from the Bland-Altman plot
were found to be consistent. The data obtained improved
the performance of NA measurement models on pelvic
radiographs. Fine-tuning the hyperparameters of the
developed model is expected to reduce error rates and
improve the generalization aptitude.

Conclusions: In conclusion, this study proves that Al can
be used safely in the evaluation of hip dysplasia in dogs by
calculating the NA. Although the canine pelvic
radiography dataset used in this study is sufficient for the
analysis, it is thought that using more data may increase the
accuracy of the system. The dataset should include images
of dogs of different breeds, ages, and sexes. For this,
datasets covering a wider group of patients and obtained
from different geographies can be used. Thus, prospective,
multicentre, and large-sample clinical studies are needed to
evaluate the use of Al in the diagnosis of early hip
dysplasia.
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