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 Hip dysplasia in dogs is a developmental disorder caused by a lack of alignment 

between the acetabulum and femur. This disorder leads to an abnormal development 

of the hip joints between the caput femoris and the acetabulum. The study included 

Ventro-Dorsal pelvis radiographs of 2,306 dogs aged 12 months or older, without 

considering breed or sex. In the first part of the study, 2,306 radiographs in DICOM 

format were labelled both for the region encompassing the caput femoris and 

acetabulum and for four critical anatomical points (the centre of the right and left 

caput femoris and the dorsocranial projection of the right and left acetabulum). In the 

study, the performance of all configurations of the YOLOv8, YOLOv9, YOLOv10, 

YOLOv11, and YOLOv12 object detection algorithms was systematically evaluated 

in terms of precision, recall, mAP@50, and mAP50-95 metrics. According to the 

evaluation results, YOLOv11 achieved the best performance on the mAP50-95 metric 

with a value of 0.95397, outperforming the other configurations. This was followed 

by YOLOv8 (0.95245), YOLOv9 (0.95183), YOLOv10 (0.95005), and YOLOv12 

(0.93832), respectively. In the mAP@50 analysis, the ranking was identified as 

YOLOv8 (0.99409), YOLOv9 (0.99386), YOLOv11 (0.99355), YOLOv12 

(0.99345), and YOLOv10 (0.9933). This study concludes that artificial intelligence 

is a reliable alternative for diagnosing hip dysplasia in dogs. It has been found to be 

a more practical and accurate diagnostic method. 

 

Key words:  

Artificial 

Canine 

Hip Dysplasia 

Intelligence 

Norberg Angle 

 

To Cite This Article: Yönez MK, Alpman U, Aslan NE, Bahar FI and Alpman E 2025. Measurement of the norberg 

angle using artificial intelligence in diagnosing canine hip dysplasia. Pak Vet J. 

http://dx.doi.org/10.29261/pakvetj/2025.280  

 

INTRODUCTION 

 

Hip dysplasia is a developmental disorder caused by a 

discrepancy between the acetabulum and the femoral head 

(Schachner and Lopez, 2015). An abnormal position of the 

hip joint causes secondary osteoarthritis (Akula et al., 

2022). Genetic and environmental factors form the basis of 

hip dysplasia (Ginja et al., 2015; Schachner and Lopez, 

2015). Hip dysplasia tends to occur most frequently in 

large-breed dogs that grow fast (Loureiro et al., 2024). 

In hip dysplasia, the cycle of degenerative joint 

disease and bone remodeling continues. Cartilage 

degeneration, thickening of the joint capsule, stretching 

or rupture of the femoral head ligament, proliferation of 

the dorsal acetabular rim, thickening of the femoral neck, 

and local muscle atrophy are characteristic features of 

advanced hip dysplasia. These disorders cause 

mechanical stress during kinematic, static and dynamic 

activities of the joint, resulting in significant functional 

impairment among the various tissues and structures that 

comprise the hip (Pinna et al., 2022). Although different 

systems are used in the evaluation of hip dysplasia, 

radiographic diagnosis of the acetabulum, femoral head 

and its position in the acetabulum, femoral neck, joint 

space and Norberg angle (NA) is taken into account and 

is the gold standard (Schachner and Lopez, 2015). 

Looseness, instability, and inflammation in the joint result 

in hip joint degeneration, characterized by the formation 

of osteophytes and exostoses. Hip dysplasia is scored, 

graded, and evaluated based on these findings (Mikkola 

et al., 2019; Aghapour et al., 2023). However, achieving 

standardization in the assessment of hip dysplasia is quite 

difficult. Examinations must be rigorous, well-defined, 

and more objective (Santana et al., 2021). 

RESEARCH ARTICLE 

http://dx.doi.org/10.29261/pakvetj/2025.280


Pak Vet J, xxxx, xx(x): xxx. 
 

2 

In dogs, a Ventro-Dorsal (VD) hip radiograph is 

taken, and hip dysplasia is assessed using the Norberg-

Olsson angle. During bilateral pelvic images, the tarsal 

joints are rotated 15° medially, ensuring dorsal alignment 

of the patellae. When measuring the Norberg-Olsson 

angle, the centres of both femoral heads are marked. The 

Norberg angle is the angle formed by the line between the 

centres of both femurs and the line drawn from the 

femoral centres of both hips to the cranial acetabular 

margin (Comhaire and Schoonjans, 2011). Studies have 

reported that the Norberg-Olsson angle is a reliable 

method for diagnosing hip dysplasia and provides a guide 

for interpreting hip radiographs (Ajadi et al., 2018; Klever 

et al., 2020).  

With technological advancements, animal models, 

innovative treatment methods, device developments, and 

artificial intelligence-assisted imaging systems are being 

used in the veterinary field (Choudhary 2025a). Artificial 

intelligence (AI)-supported diagnostic systems improve 

clinical examination, diagnosis, and treatment by analyzing 

large data sets, increasing accuracy, and detecting subtle 

anomalies and anatomical points (Choudhary et al., 

2025b). As AI enables computer programs to analyze large 

imaging datasets and perform tasks related to veterinary 

diagnostic imaging, it has the potential to help meet the 

growing need for radiologic services through workflow, 

quality control, and image interpretation applications 

(Fitzke et al., 2021). 

Loureiro et al. (2024) developed a three-stage deep 

learning-based system that can automatically determine 

and measure the femoral neck thickness index. They 

noted that there was no significant difference between the 

system's measurements and those of the experts. Gomes 

et al. (2021) used the Inception-V3 transfer model to 

classify hip dysplasia. The data obtained indicated a 75% 

accuracy rate, and AI was reported as an alternative 

method for diagnosing hip dysplasia. In the literature, it 

has been emphasized that AI is an important diagnostic 

method in the field of radiology, that it is a strong 

alternative with the time savings and standardization it 

provides, and that comprehensive studies are necessary 

(LeCun et al., 2015; Vinicki et al., 2018; Hennessey et 

al., 2022). In this study, we aimed to develop a deep 

learning-based application to improve and standardize the 

diagnosis of hip dysplasia in dogs by analyzing Norberg-

Olsson measurements using the YOLO (You Only Look 

Once) and HrNET (High Resolution Network) 

algorithms. 

 

MATERIALS AND METHODS 

 

The study evaluated VD radiographs of 2,306 dogs 

presented to the Surgery Department of Erciyes 

University's Faculty of Veterinary Medicine between 2011 

and 2025. Breed and gender were not considered in the 

evaluated radiographs. Only pelvic VD radiographs from 

dogs older than 12 months were included in the study. 

Images from the acetabulum to the distal femur were 

selected from DICOM (Digital Imaging and 

Communications in Medicine) format, showing no 

pathological lesions. Due to the retrospective and 

observational nature of the study, ethics committee 

approval and owner consent were not sought. 

Labelling: First, the region encompassing the femoral 

head and acetabulum, as well as four critical anatomical 

landmarks (the centre of the right and left femoral head 

and the dorsocranial processes of the right and left 

acetabulum), was identified on 2,306 radiographs. The 

MKY application, a software we developed and made 

openly available on the GitHub website, was used for 

labelling. After labelling, the radiographic images were 

randomly divided into groups: 70% (1614) for training, 

15% (346) for validation, and 15% (346) for testing. The 

training and test images were used to assess accuracy 

during training, while the images in the validation dataset 

were used to determine the overall map50-90 and map50 

values, as well as to evaluate the extent to which the 

points deviated from the expert-marked points. All 

measurements were performed by MKY, UA, and NEA. 

The datasets were prepared separately for training two 

different models using the YOLO and HrNET 

architectures. Intraclass correlation coefficient (ICC) 

analysis was used to assess measurement consistency 

among experts, with values ranging from 0 to 1. Bland-

Altman analysis was also performed to determine whether 

there were systematic differences among experts and to 

determine the limits within which 95% of measurement 

differences fell.  

 

Data Set Preparation: To prepare the dataset for YOLO 

training, the coordinates of the region encompassing the 

caput femoris and acetabulum were determined in 

radiographic images, and the labelled coordinates were 

converted to YOLO format. To prepare the HrNET dataset, 

the region encompassing the caput femoris and acetabulum 

in each radiographic image was cut using Python software, 

and the coordinates of the labelled points were calculated. 

This ensured that the coordinate information was not 

distorted and that the HrNET model focused solely on the 

relevant anatomical region. 

 

Study Design: After the labelling process, the overall 

algorithm flow was performed in two stages. In the first 

stage, the pelvic region was approximated using YOLO, 

and in the second stage, an HrNET algorithm was 

developed to calculate the NA. The aim was to determine 

the model that most successfully detected the pelvis 

among the YOLO models (YOLOv8-v12). Because 

successfully labelling the four different points that will 

determine the NA is critical for successful pelvic 

detection, the HrNET structure was combined with the 

Binary Heatmap method to compare the accuracy of the 

points and angles (Fig. 1). 

 

Training: Testing was performed using Windows 11, 

16GB of RAM, and an NVIDIA GeForce GTX 1650Ti 

GPU. Model training was conducted in Google Colab 

utilizing 80GB of RAM and an A100 GPU. PyTorch 

(2.0.1) and CUDA (11.8). 

 

Training of YOLO: The YOLO architecture was 

chosen for pelvic region detection due to its single-pass 

detection approach, real-time processing             

capability, and proven effectiveness in                     

medical               applications            (Ragap et al., 2024).
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Fig 1: Flow diagram of the study. 
 

All models were trained for 40 epochs to ensure adequate 

learning and adaptation. Batch size was set to 32, which 

balances memory usage and processing speed. Images 

were resized to 640x640 pixels. Model weights were 

updated using Stochastic Gradient Descent (SGD) 

optimization. 

In the hyperparameter settings, the initial learning rate 

was 0.01, and the final learning rate was 0.001. Momentum 

was maintained at 0.937 across epochs, while weight 

reduction of 0.0005 prevented overfitting. The training 

process began with a 3-epoch warm-up phase using a 

momentum value of 0.8. The following parameters were 

used for data augmentation: hue shift (hsv_h=0.015), 

saturation increase (hsv_s=0.7), brightness change 

(hsv_v=0.4), horizontal flip (fliplr=0.5), and mosaic 

increase (mosaic=1.0). Additionally, for data set 

enrichment, images were subjected to ±3° random rotation, 

±2° horizontal and vertical shearing, grayscale (hue value 

±3°) for 4% of the images, saturation ±3°, brightness ±8°, 

and random noise addition up to 0.26% of the pixels. For 

geometric transformations, translation (translate=0.1) and 

scaling (scale=0.5) were used. 

 

HRNet Training 

HRNet Architecture: In this study, the HrNET-18 

backbone architecture was chosen for the precise 

localization of four anatomical landmarks. This model was 

used to generate 128x128 heatmaps for each target point 

using a 512x512 input image. A 1x1 convolutional layer 

was added to the output of the HrNET-18 backbone, 

followed by a custom Binary Head Block containing Batch 

Normalization and ReLU activation functions. In the final 

layer, the 270-channel high-resolution feature map from 

the last layer of HrNET was converted to a 4-channel 

output (one channel for each anatomical landmark) using 

1x1 convolution. Probability values in the range [0-1] were 

calculated for each pixel in the heatmaps using sigmoid 

activation following Zakareya et al. (2023). 

 

Binary Heat Map: Instead of direct coordinate regression, 
heat maps were used to map anatomical landmarks. This 
approach enhanced localization accuracy by preserving 
spatial information. The Binary Heat Map function (Table 
1) assigned a single positive pixel to each anatomical 
landmark. To increase the robustness of the model, noise 
was randomly assigned to neighbouring coordinates in 
proportion to the errors in the coordinates. This stochastic 
approach enabled controlled noise injection during the 
training process, strengthening the model's ability to detect 
artefacts that may occur during X-ray imaging. 
 
Table 1: HRNet Binary Heat Map Parameters  

Parameter Value Explanation 

Heat Map Resolution 128x128 Pixel dimensions of the output Heat 
Map 
 

Positive Pixel Value 1.0 Pixel value at anatomical point 
location 
 

Negative Pixel Value 0.0 Value of background pixels 
 

The Noise Injection 

Technique 

Stochastic 

Rounding 

Assigning a random neighbour 

coordinate proportional to the 
coordinate errors 
 

Output Coordinate 

Calculation 

Top-k 

(k=9) 

Providing sub-pixel accuracy by taking 

the weighted average of the 9 pixels 
with the highest activation 

 

Positive Class Weight 100 The weight coefficient given to 
positive pixels in the BCE loss function 
 

Model Backbone HRNet -
18 

Network architecture that preserves 
high-resolution features 
 

Feature Channels 270 Number of channels of HRNet-18 
output tensor 
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Coordinate Extraction: A new approach was developed to 
obtain the final coordinates from the heat maps generated by 
the trained model. A colour scale ranging from white to red 
was used for Binary Heat Map point detection (Fig. 2B). The 
pixels with the highest activation were weighted, and 
coordinate extraction was performed at sub-pixel precision. 
Red regions were identified as indicators of high activation 
(Fig. 2C). The pixels with the highest k activation were 
evaluated, and their weighted averages were calculated using 
Softmax Scores as described by Liu (2025). 
 

Loss Function: Implemented binary cross-entropy loss 
function for binary heat map, which addresses class 
imbalance using a positive weighting factor. 
 

𝐿(𝑦, 𝑦̂ ) = −
1

𝑁
∑

𝑁

𝑖=1

[𝑝 ∙ 𝑦𝑖 ∙𝑙𝑜𝑔 𝑙𝑜𝑔 (𝜎(𝑦̂𝑖))  + (1 − 𝑦𝑖) ∙𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝜎(𝑦̂𝑖)) ] 

 

Formula 1: Binary cross-entropy formula. 
 

Here, 𝒚𝒊 represents the true binary label, 𝒚̂𝒊 notes the 

predicted logarithmic value, 𝝈(∙) is the sigmoid activation 

function, and 𝒑 refers to the positive class weighting factor. 

This approach, where the positive weight factor was set to 

100, made the few anatomical point pixels in the heat map 

more evident than the background pixels. The AdamW 

algorithm was used for optimization, and a weight decay 

value of 0.01 was applied as the default. The model was 

trained for 34 epochs using a one-cycle policy with a 

maximum learning rate of 5e-4. Training was performed on 

an NVIDIA A100 GPU and lasted for 42 minutes. Data 

augmentation techniques were ±10° rotation, 5-15% 

scaling and ±10% brightness adjustments. Horizontal flip 

was intentionally disabled to preserve anatomical landmark 

symmetry. 
 

 

RESULTS 
 

Pre-training heat map analysis: The binary heat map 

generated before training revealed that the model had not 

yet fully learned the anatomical structures. The activation 

regions were broad and scattered. It was observed that 

the pelvic joint positions were unclear, and high 

activation values did not provide a precise localization. 

Instead of critical anatomical landmarks such as the 

acetabulum and femoral head, low-precision estimates 

were distributed throughout a wide area of the pelvis. 

This indicated that the untrained model had not yet 

acquired the ability to determine the precise locations of 

anatomical structures.  

 

Post-training heat map and landmark detection: A 

significant improvement was observed in the heat map after 

training. The model was now able to detect each anatomical 

landmark (left and right acetabulum, left and right femoral 

head) with high accuracy. The activation regions became 

sharp and focused, with the red regions indicating high 

confidence, matching the exact locations of the target 

anatomical structures. Background activation was almost 

eliminated, leaving a concentrated activation pattern at 

relevant points (Fig. 3). 

 

 
 
Fig. 2: Point detection on the pelvis radiograph A) Original VD radiograph B) Heat map generated for the right femur, C) Weighted average of the 
pixels with the highest activation, D) Marking of the detected points. 
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Fig. 3: Binary heat map after training. 
 

Comparative evaluation of YOLO models: In the study, 

the performance of all configurations of the YOLOv8, 

YOLOv9, YOLOv10, YOLOv11, and YOLOv12 object 

detection algorithms was systematically evaluated in terms 

of precision, recall, mAP@50, and mAP50-95 metrics. 

According to the evaluation results, YOLOv11 achieved 

the best performance on the mAP50-95 metric with a value 

of 0.95397, outperforming the other configurations. This 

was followed by YOLOv8 (0.95245), YOLOv9 (0.95183), 

YOLOv10 (0.95005), and YOLOv12 (0.93832), 

respectively. In the mAP@50 analysis, the ranking was 

identified as YOLOv8 (0.99409), YOLOv9 (0.99386), 

YOLOv11 (0.99355), YOLOv12 (0.99345), and 

YOLOv10 (0.9933). 

When examining the precision metric, the YOLOv11 

and YOLOv12 configurations demonstrated superior 

accuracy performance with a value of 0.99174, followed 

closely by YOLOv8 and YOLOv9 at 0.99173. The 

YOLOv10 model reached a value of 0.99172. In terms of 

the recall metric, all models achieved an equal level of 

success with a notable identical score of 0.99174. 

Regarding computational efficiency, YOLOv8 exhibited 

the fastest performance with a training time of 40.4 

minutes, followed by YOLOv11 (44.4 minutes), YOLOv9 

(48.8 minutes), YOLOv10 (50.3 minutes), and YOLOv12 

(56.1 minutes).  
An analysis of the training processes of the models 

revealed that YOLOv9 had reached its optimal mAP50-95 
value at an early stage, specifically at the 22nd epoch. At 
the same time, YOLOv10 and YOLOv12 achieved the 
same level at the 38th epoch. YOLOv8 reached its peak 
accuracy at the 31st epoch, and YOLOv11 at the 37th 
epoch. These findings highlight the correlation between 
model complexity and convergence speed, particularly 
demonstrating YOLOv9’s rapid optimization capability. 
Additionally, the data indicated that despite its more 

complex architecture, YOLOv12 offered a lower validation 
performance-efficiency balance compared to the other 
models (Table 2). 

 
Table 2: YOLO (You Only Look Once) Results 

Metrics YOLOv8               YOLOv9 YOLOv10          YOLOv11 YOLOv12 

mAP50 0.99409 0.99386 0.9933 0.99355 0.99345 
mAP50-95 0.95245 0.95183 0.95005 0.95397 0.93832 
Precision 0.99173 0.99173 0.99172 0.99174 0.99174 

Recall 0.99174 0.99174 0.99174 0.99174 0.99174 
Training 
Duration(min) 

40.4 48.8 50.3 44.4 56.1 

 

HrNET-based landmark detection: Detection was 

performed using the HrNET model, which was trained by 

cropping 346 validation images from the YOLO v11 

model. Thanks to the Binary Heat Map and high-resolution 

network structure, the model's average pixel error was 

determined to be 4.2866 pixels. The resulting RMSE (mean 

pixel error) value was 4.7851 pixels, indicating a consistent 

error distribution. The results of the detection process 

revealed that detecting the caput femoris was relatively 

more difficult than detecting the acetabulum (Table 3).  
 
Table 3: Average pixel errors obtained for each anatomical point  

Left Acetabulum 3.9561  pixel               
Right Acetabulum 3.9699  pixel  

Left Caput Femoris 4.7139  pixel 
Right Caput Femoris 4.5066  pixel 

 

Training process and loss analysis: The model showed a 

sudden decrease in loss values within the first three epochs 

(from 0.307212 to 0.008288). This indicated that our 

proposed binary heat map approach and HrNET 

architecture were able to learn anatomical landmarks 

quickly and effectively. The lowest validation loss value 

was recorded at 0.003585 in the 15th epoch. This epoch 

was found to be the step with the highest generalization 

ability of the model. 
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Fig. 4: Bland-Altman table.     Fig. 5: Actual and predicted curve. 

 

Validation of AI-estimated NA: The Bland-Altman plot 
(Fig. 4) confirmed the agreement between the artificial 
intelligence-estimated and manually measured NA. The 
mean difference was determined to be -0.05° (95% CI: -
5.48° to 5.38°). This minimal deviation indicated that the 
AI algorithm did not over or underestimate the NA. The 
narrow limits of agreement (approximately ±5.4°) 
indicated high measurement precision across the entire 
range of observed angles (60°-120°). 95.1% of all 
measurement differences were observed to fall within the 
limits of agreement. The distribution of differences was 
symmetrical around the mean difference line, but a small 
number of outliers were found to lie beyond the limits of 
agreement. These outliers (n=17, 2.5% of all 
measurements) were observed at the extremes of the 
measurement range of the high (>110°) or low (<70°) NA. 

Correlation between AI and manual NA 
measurements: A strong positive correlation (R²=0.9507) 
was observed between the estimated and manually 
measured NA values. Regression analysis revealed 
consistent performance across the clinically relevant NA 
range (60°-130°). Right and left NA measurements (blue-
green, respectively) showed similar distribution patterns 
along the line. (Fig. 5). 

 

DISCUSSION 
 

Current radiographic devices require manual labelling 

and verification of anatomical points by veterinarians for 

measuring the NA. To enhance the efficiency of this 

process and make it smoother and faster, this study aims to 

develop an AI application that can estimate the NA from 

radiographic images. 

Artificial intelligence technologies are effective in 

processing large data sets and identifying complex patterns, 

which is critical for improving diagnostic accuracy and 

understanding disease mechanisms (Jacob et al., 2022; 

Bouchemla et al., 2023; Akinsulie, 2024). Without AI, many 

patterns may not be discovered because traditional methods 

struggle to analyze the large amounts of data generated in 

veterinary practice (Appleby and Basran, 2022; Kim et al., 

2022). By processing various data sources such as laboratory 

results and diagnostic images, it provides a better 

understanding of diseases and reduces the possibility of 

misdiagnosis (Albadrani, 2024). It has been observed that 

artificial intelligence in veterinary medicine is very effective 

in diagnostic imaging. Joslyn and Alexander (2022) reported 

that in research environments, it is possible to detect some 

radiographic abnormalities in veterinary radiology with AI. 

In the present study, radiographs of dogs were evaluated and 

analyzed to diagnose hip dysplasia with the support of 

artificial intelligence. 

Lassalle et al. (2024) reported in their study evaluating 

hip dysplasia with AI that manual measurements can lead 

to errors and variability among observers. Consequently, 

they found that the use of AI has the potential to increase 

the reproducibility of measurements as part of 

comprehensive pelvic evaluations and thus improve 

diagnostic accuracy. Hansen et al. (2025) reported in their 

study that Bland-Altman plots showed good agreement 

between human and AI measurements when NA values 

were greater than 80°. Franco-Gonçalo et al. (2025) 

developed an AI algorithm that measures the distance 

between the center of the femoral head and the dorsal 

acetabular rim. This developed system has enabled more 

transparent and interpretable results in the assessment of 

hip dysplasia. In our study, the results obtained from the 

HrNET algorithm we used are consistent with those of 

Lassalle et al. (2024). The results obtained by using the 

YOLOv11 and HrNET algorithms together are consistent 

with the study by Hansen et al. (2025) in terms of 

minimizing inter-observer variability. Franco-Gonçalo et 

al. (2025) show parallels in terms of obtaining interpretable 

results in the evaluation of hip dysplasia.  

In the evaluation of radiographs, factors such as the 

experience level and training, fatigue, lack of attention, or 

intense working tempo of the observer are important 

factors affecting the reliability of the evaluation. This 

subjectivity leads to inconsistencies between individual 

assessors (Pesapane et al., 2024). Early diagnosis of hip 

dysplasia is critical for the breeding and genetic 

development of dog breeds. In the present study, NAs were 

measured using YOLO V8-9-10-11-12 and HrNET spine 

architecture in VD pelvis radiographs in dogs. Thus, by 

presenting an objective approach to evaluating hip 

dysplasia, an AI algorithm was developed that remains 

consistent regardless of the evaluator, provides fast and 

standardized results, and enables the evaluation of a large 

number of radiographs in a very short time period. 

The primary difference between this study and other 

studies in the literature is that two distinct AI architectures 

are used in conjunction with each other. In this way, the 

shortcomings of the two algorithms are largely overcome. 

In the studies in the literature, either the YOLO algorithm 

alone (Den et al., 2023) or the Convolutional Neural 

Network (CNN) algorithm alone (Boufenar et al., 2023) is 

used. Within the scope of the presented study, six different 

methods were compared using YOLO v8-9-10-11-12 and 

HrNET architectures together. 
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AI is used in various ways to detect hip dysplasia 

(Boufenar et al., 2023; Den et al., 2023). Methods based on 

the detection of a specific anatomical landmark are more 

frequently used in AI. Classification of hip dysplasia is 

performed using acetabular index measurements (Sha et 

al., 2023). In the presented study, NA was determined by 

measuring the angle between the centre of the femoral head 

and the dorsal rim of the acetabulum. The use of AI to 

identify anatomical landmarks on pelvic radiographs is 

similar to the study by Sha et al. (2023). 

McEvoy et al. (2013) reported that they used the 

partial least squares discriminant analysis (PLS-DA) model 

to identify pelvic joints. They reported a classification error 

of 6.7%. In another study, the researchers scored hip 

dysplasia using the YOLOv3 Tiny NN application. They 

emphasized that it demonstrated 53% sensitivity and 92% 

specificity in the analysis of radiographs without hip 

dysplasia and radiographs showing dysplastic features 

(McEvoy et al. 2021). Similarly, Gomes et al. (2021) 

investigated hip dysplasia diagnosis on VD radiographs 

using an InceptionV3-based NN model. They reported that 

the model achieved 75% accuracy and that its test 

performance was adequate. The YOLO (8-9-10-11-12) 

algorithm was used in the presented study. The analysis of 

these algorithms compared the metrics of precision, recall, 

mAP@50, and mAP50-95. As a result, the YOLOv11 and 

YOLOv12 configurations showed superior accuracy 

performance (0.99174), with a mean difference of -0.05° 

(95% CI: -5.48° to 5.38°). These results demonstrate a 

higher accuracy rate compared to the results obtained in the 

studies of McEvoy et al. (2013), McEvoy et al. (2021), and 

Gomes et al. (2021). 

Boufenar et al. (2023) conducted radiographic 

analyses using a CNN model in their study on dogs with 

hip dysplasia. They noted that the 507 radiographic images 

used were limited and that no expert support was received 

during the study. Despite this, the best-performing VGG16 

model achieved 98.32% accuracy, 98.35% recall, and 

98.44% sensitivity. Consequently, they emphasized the 

need to investigate larger and more complex models. Sezer 

et al. (2020) demonstrated that pelvic ultrasound images 

can be classified and segmented using CNN. They found 

97.9% accuracy, 96.17% sensitivity (95% CI: 92.85%-

98.23%), and 98.02% specificity (95% CI: 96.39-99.05%) 

in their classification. In our study, radiographic images 

from 2,306 dogs were evaluated. The YOLOv11 model 

yielded the best results in terms of sensitivity (0.99174), 

recall (0.99174), and accuracy (95%). In light of the 

obtained data, it was concluded that larger data sets and 

more complex models should be investigated. Our 

observations align with the study conducted by Boufenar et 

al. (2023) and Sezer et al. (2020) in terms of limitations 

and results obtained. 

In their study, Loureiro et al. (2024) developed a 

model capable of measuring the femoral neck thickness 

index in the AI diagnosis of hip dysplasia in dogs. In their 

study, they found that the majority of the data points in the 

Bland-Altman plot fell between -0.047 and 0.057. They 

also determined a 95% confidence interval. In our study, 

the mean difference between the artificial intelligence and 

manual measurements in the Bland-Altman plot was -0.05° 

(95% CI: -5.48° to 5.38°). This minimal deviation 

demonstrated that the AI was consistent in measuring the 

NA. Although the methodology used in the presented study 

differed from that of Loureiro et al. (2024), the confidence 

interval and the data obtained from the Bland-Altman plot 

were found to be consistent. The data obtained improved 

the performance of NA measurement models on pelvic 

radiographs. Fine-tuning the hyperparameters of the 

developed model is expected to reduce error rates and 

improve the generalization aptitude. 

 

Conclusions: In conclusion, this study proves that AI can 

be used safely in the evaluation of hip dysplasia in dogs by 

calculating the NA. Although the canine pelvic 

radiography dataset used in this study is sufficient for the 

analysis, it is thought that using more data may increase the 

accuracy of the system. The dataset should include images 

of dogs of different breeds, ages, and sexes. For this, 

datasets covering a wider group of patients and obtained 

from different geographies can be used. Thus, prospective, 

multicentre, and large-sample clinical studies are needed to 

evaluate the use of AI in the diagnosis of early hip 

dysplasia. 
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