Detection of Class 1 and 2 Integrons, β-Lactamase Genes and Molecular Characterization of Sulfonamide Resistance in Escherichia coli Isolates Recovered from Poultry in China

Jam Kashif§, Rehana Burio§, Javed Memon, Muhammad Yaqoob, Jamila Soomro§, Diao Dongxue, Huang Jinhu and Wang Liping*

Key Lab of Veterinary Pharmacology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095; Peoples Republic of China; §Also affiliated with Sindh Agriculture University, Tandojam, Pakistan
*Corresponding author: wlp71@163.com

ABSTRACT
This study aimed to detect integrons, β-lactamase genes and to characterize sulfonamide resistant E. coli isolates recovered from poultry. All the isolates (n=38) were investigated for the presence of integrons, Sul1, Sul2, Sul3 genes by PCR. Class 1 and class 2 integron were present in 79 and 16%, respectively. Additional resistance gene cassette embedded in class 1 and 2 integrons was aadA1, aadA5, dfrA17 and aadA22, dfrA, respectively. Sul1 and Sul2 genes were detected in 42.1 and 60.5% isolates, respectively. Both the Sul1 and Sul2 were present in 23% isolates. However, Sul3 gene was not present. Co-existence of Sul1 and Sul2 with class 1 integrons was found in 28.9 and 60.5% of class 1 integron positive isolates, respectively. Whereas, a less percentage of isolates showed a low level of resistance to β-lactams and no blaCTX-M, blaSHV and blaTEM was found. The MIC results showed resistance to sulfadiazine and sulfamethoxazole-trimethoprim in 88 and 84% isolates, resistance to penicillin, ampicillin, amoxicillin was 52, 52 and 44%, respectively. Chloramphenicol, florfenicol, tetracycline and gentamycin resistance was found in 51, 5, 42 and 67% isolates, respectively. This study revealed high frequency of class 1 integrons, Sul genes among poultry E. coli isolates, therefore further spread of Sul genes and integrons is predictable.

©2013 PVJ. All rights reserved

INTRODUCTION

Avian pathogenic E. coli (APEC) causes several infections in poultry which results in high mortality and leads to heavy economic losses to poultry industry worldwide. Antimicrobials are used for many decades as efficient and inexpensive antibacterial agent in poultry industry. Antimicrobial resistance is main reason for the treatment failure for all bacterial diseases and emergence of antimicrobial resistant pathogens in humans as well as in food producing animals is also a growing universal problem (Karczmarczyk et al., 2011). However, high prevalence of antimicrobial resistance genes (AMR-genes), including sulfonamide resistance genes has been reported in gram-negative bacteria of animals and humans source. Usually resistance to sulfonamides spreads extensively and rapidly by acquisition of Sul1, Sul2 or Sul3 (Trobos et al., 2008). Drug resistance monitoring programs have been implemented in many countries for the purpose of protecting the health of humans as well as animals. Antimicrobial resistant E. coli can also be reservoirs of AMR-genes and it can further spread the resistance determinants to other zoonotic bacteria which can also cause infections in animals and humans (Aarestrup, 2004). Assessment of antimicrobial resistance at molecular level is a useful tool for understanding the contribution of genetic elements responsible for developing and dissemination of resistance in bacteria (Alekshun and Levy, 2007).

Multidrug resistant bacteria is considered a potential risk to human health through food borne infections with super bug and resistant pathogens or because integrons (Box et al., 2005). Horizontal gene transfer is also a main factor for the transfer of resistance genes from one bacterium to another (Warnes et al., 2012). It is reported that genes encoding antimicrobial resistance are often
linked integrons which are important contributors in the distribution of antimicrobial resistance among Gram-negative bacteria (Fluit and Schmitz, 2004; Cambray et al., 2010). Moreover, Sul1 gene has also been detected as part of the 3’ conserved segment (3’CS) of class 1 integrons, which are the most frequently detected integrons in Enterobacteriaceae family (Bean et al., 2009).

E. coli from poultry and livestock is exposed to a high selective pressure because most of the antimicrobials are used in food-producing animals. Consequently, antimicrobial resistance is mounting and a variety of resistance genes have been reported. This study revealed widespread of Sulfonamide resistance genes and integrons in _E. coli_ isolates of poultry in Eastern China. It was found that the high level resistance to sulfonamide in poultry _E. coli_ is due to presence of _Sul1_ genes and presence of class 1 integrons may contribute in spreading of sulfonamide resistance in other gram negative bacterial isolates or directly in the environment.

MATERIALS AND METHODS

Isolation, selection and molecular identification of _E. coli_ isolates: A total of 38 _E. coli_ isolates recovered from rectal/fecal samples of poultry were selected for this study. Briefly, _E. coli_ were identified by standard methods, colony morphology on blood agar, Gram staining and growth on EMB agar. Molecular identification of isolates was carried out by PCR method using eubacterial primers specific for 16SrDNA gene (1520bp), all the primers used in this study are shown in Table 1.

DNA extraction and detection of Integrons, Sulfonamide and β-lactamase genes by Simplex PCR: Genomic DNA was extracted using a commercial kit (Geneaid Biotech, Taiwan) according to the manufacturer’s instructions from isolates grown in 5 ml of luria broth (Oxoid) overnight at 37°C. The PCR reaction mixture of a final volume of 50 µL and PCR conditions were followed as described previously (Soufi et al., 2009). The PCR was done using an ABI 2720 thermal cycler (Applied biosystems, USA). All the yielded amplicons were purified using the Geneaid PCR purification kit and were sequenced (Takara Bio, China).

PCR amplification for detecting _Sul1, Sul2, Sul3_ gene and class 1, 2 and 3 integrons was carried out using specific primers shown in table 1. Gene cassettes of class 1 and 2 integrons were detected by using primers 5’cs-3’cs and hep-51 and hep-74, respectively. All the isolates which showed resistance to penicillin, ampicillin and amoxyclillin were screened for the presence of _blaCTX-M, blaSHV_ and _blaTEM_ genes using primers and procedures as described previously by (Ahmed et al., 2008).

The pMD19-T vector cloning: To obtain a full size fragment of the target gene, the PCR products were concentrated by ethanol precipitation before cloning into competent _E. coli_ followed by TA vector cloning. A single transformant from every cloning reaction was checked for the presence of the required inserts by PCR. The pMD19-T vector (TaKaRa Bio, Shanghai, China) was used according to the manufacturer’s instructions.

DNA sequencing: All amplified PCR products were sequenced (Takara Bio, shanghai, China). The obtained nucleotide sequences were blasted with National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov).

Antibacterial susceptibility determination: Minimal inhibition concentrations (MICs) of _E. coli_ isolates were determined using the standard broth doubling dilution method on Muller–Hinton medium. Susceptibility to tested antimicrobial was determined by the micro broth dilution method and breakpoints were used according to Clinical Laboratory Standards Institute (CLSI), standards (CLSI, 2010). _E. coli_ ATCC 25922 was used as quality control. Antimicrobials used in this study were: sulfadiazine (SUL), sulfamethoxazole and trimethoprim (SUL-TRM), penicillin (PEN), ampicillin (AMP), Amoxicillin (AMO), chloromphenicol (CMP), gentamycin (GEN), tetracycline (TET) and florfenicol (FFC).

RESULTS

Antibacterial susceptibility: MIC results of studied isolates showed high level of resistance against sulfonamides, followed by tetracycline, gentamycin, streptomycin, ampicillin, amoxicillin. Whereas, only few isolates were resistant to florfenicol. The percentage of isolates resistant to tested antimicrobials is shown in Fig. 2. Multidrug resistance was found in 62% isolates.

Detection of sulfonamide resistance genes: A total of 42.1 and 60.5% of the isolates carried _Sul1_ and _Sul2_ genes, respectively (Table 2). Overall, _Sul2_ was found in all of the class 1 integron positive isolates. The co-existence of both sulfonamide resistance genes (_Sul1_ and _Sul2_) was found in 23.0% isolates. Fig. 1 shows agarose gel electrophoresis of PCR assay of _Sul1_ and _Sul2_ genes, respectively. However, no any tested β-lactamase gene was found in any isolate. Sequences obtained for _Sul1, Sul2_ and integrons showed 100% similarity with sequences available at NCBI under accession numbers JN566044.1 and NC010488.1, respectively.
Prevalence of class 1 and 2 integrons and their gene cassettes: The incidence of class 1 and 2 integrons and other antibiotic resistance markers among *E. coli* isolated is summarized in Table 2. PCR analysis revealed the presence of class 1 and class 2 integron in 79 and 16%, respectively. Among the 30 class 1 integron positive isolates, 28 isolates had detectable gene cassettes and the remaining isolates did not yield any PCR product. The gene cassettes embedded in class 1 and 2 integrons were *aadA1, aadA5, dfrA17* and *aadA22, dfrA5*, respectively. Moreover, 16% isolates carried both class 1 and 2 integrons. An unconditional association between class 1 integrons with *Sul2* and *Sul1* genes was pragmatic due to the co existence of *Sul2* and *Sul1* genes and class 1 integrons in the studied isolates (Table 2).

DISCUSSION

E. coli isolates are usually contaminating food of animal origin, here we selected *E. coli* isolates from poultry isolates resistant to various antibiotics but mainly to sulphonamides and this might be due to the reckless use of sulphonamides in poultry. Food producing animals can contribute in the selection and dissemination of antimicrobial resistant bacteria (Box *et al*., 2005). Moreover, it is well established that antimicrobial resistance genes can be transferred from commensal bacteria, via integrons, transposons or plasmids, into virulent bacteria present in the human intestine (Johnson *et al*., 2005). There is also a considerable difference in resistance patterns among the bacterial isolates recovered from different geographical regions and sources. Interestingly, we found that our poultry *E. coli* isolates were not ESBL producing, however recent studies from Bangladesh and Sweden has reported the poultry *E. coli* isolates were ESBL producing (Bonnédaal *et al*., 2010; Hasan *et al*., 2011). Furthermore, multidrug resistance found in 62% isolates is much greater than 22.7% previously reported (Hasan *et al*., 2012). Moreover, the Florfenicol followed by Tetracycline were found most effective antimicrobials as compared to other used antimicrobials.

The proper estimation of antimicrobial resistance in *E. coli* isolates from food producing animals is equally important to reduce the threats to health of both animal and human. In this study high frequency of *Sul2* and *Sul1* genes associated with class 1 integrons was evident. However *Sul3* gene was present in our isolates, whereas, previously *Sul3* is detected in *E. coli* isolates from pigs and human in Switzerland and Sweden, respectively (Perreten and Boerlin, 2003; Grape *et al*., 2003). High frequency of class 1 integron and *dfrA* and *aadA1* gene cassette array in class 1 integron positive *E. coli* has been reported from Spain (Machado *et al*., 2005). The high incidence of integrons is worrisome and is usually considered due to the significant association of integron positive isolates with multi-resistance phenotypes. Integron carries antimicrobial resistance genes and recently it appears to be increasing among food *E. coli* isolates and could represent a vehicle for the gaining and distribution of antimicrobial resistance in environment. In our isolates no beta-lactamase gene was found and this is in contrast to recently reported high prevalence of beta-lactams in poultry *E. coli* isolates (Soufi *et al*., 2011). Whereas, high prevalence of class 1 integrons in poultry *E. coli* isolates is in agreement with previous study (Soufi *et al*., 2009).

Sulphonamide resistance was clearly due to presence of *Sul2* and *Sul1* genes, however some isolates did not carry *Sul1, Sul2* and *Sul3* genes but also showed mild resistance to Sulphonamides which might be due to cross resistance or presence of any unidentified *Sul* gene. Furthermore, Aminoglycosides and Trimethoprim resistance was because of high prevalence of class 1 integrons carrying gene cassettes encoding resistance to aminoglycosides and trimethoprim. High incidence of *Sul* genes, integrons and multidrug resistance in poultry *E. coli* isolates is dangerous and poses a serious threat of spreading resistance determinants to environment and direct to human through food chain.

This study for the first time reports the high prevalence of class 1 integrons, *Sul* genes and their unconditional association with each other in poultry *E. coli* isolates from eastern China. Furthermore, poultry *E. coli* isolates could act as a reservoir of sulphonamide resistance genes and class 1 integrons carrying antimicrobial resistance gene cassettes. Molecular characterization of sulphonamide resistant isolates of poultry and high prevalence of integrons suggests the prudent use of sulphonamide in poultry, particularly in this region of China. This study revealed that the sulphonamide resistance is due to presence of *Sul1* and *Sul2* genes. Moreover, due to the rapid development and spread of resistance determinants among bacteria, a country wise antimicrobial resistance monitoring studies for bacterial isolates of live stock and poultry are necessary to control the situation. Further studies are needed to discover the genetic location of *Sul* genes, integrons in the bacterial genome and their transferability.
Table 2: Characterization of Sulfonamide-resistant E. coli isolates, presence of Integrons, their gene cassettes and an unconditional association between Sul genes and Integrons

<table>
<thead>
<tr>
<th>Resistance genes</th>
<th>Positive isolates</th>
<th>%</th>
<th>W ith Class 1 Integron</th>
<th>W ith Class 2 Integron</th>
<th>W ith Class 1 & 2 Integrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sul1</td>
<td>16</td>
<td>42.1</td>
<td>16/16 (100)</td>
<td>0/2 (0)</td>
<td>0/0</td>
</tr>
<tr>
<td>Sul2</td>
<td>23</td>
<td>60.5</td>
<td>23/23 (100)</td>
<td>2/2 (8.6)</td>
<td>6/23 (26.0)</td>
</tr>
<tr>
<td>Sul1, Sul2</td>
<td>9</td>
<td>23</td>
<td>9/9 (100)</td>
<td>4/9 (44.4)</td>
<td>9/9 (100)</td>
</tr>
</tbody>
</table>

Integrons

Class 1 integron 30/38 79 aadA1, aadA5, dfrA17
Class 2 integron 6/38 16 aadA22, dfrA5
Class 1 & 2 integrons 6/38 16 aadA5, dfrA17, aadA22, dfrA5

Values in parenthesis indicate percentage.

Acknowledgement: The study was partially supported by the National Natural Science Foundation of China (No. 30972220), Natural Science Foundation of Jiangsu Province, China (No. BK2012771), the Fundamental Research Funds for the Central Universities (KYZ2011105) and project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

REFERENCES