Korean Beechwood Creosote as a Substitute to an Antibiotic for Post Weaning Diarrhea in Piglets

Simrinder Singh Sodhi 1, Jeong Hyun Kim 1, Neelesh Sharma 1, Kwang Keun Cho 3, Jae Young Kim 6, Ki Beom Kim 4, Chul-Yon Jeong 5, Yong Min Yoon 2, Sung Jong Oh 1 and Dong Kee Jeong 1*

1Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, Korea; 2Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Korea; 3Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju, Korea; 4Korea Institute for Animal Products Quality Evaluation, Anyang, Korea; 5Changjobio Research Institute, Changjobio Corporation, Jeju, Korea; 6Swine Science & Technology Center, Gyeongnam National University of Science and Technology, Jinju, Korea

*Corresponding author: dkjeong@jejunu.ac.kr

ARTICLE HISTORY (13-522)

ABSTRACT

Post weaning diarrhea (PWD) effects the economy of pig industry and extensive use of antibiotics to treat PWD led to the development of antibiotic resistance. To counter the issue of antibiotic resistance, role of Korean Beechwood creosote has been studied. Six weeks old, 12 piglets were divided into four groups (3 in each). Diarrhea was induced with S. typhimurium in three groups. Piglets treated with creosote have shown 11.52 and 3.12% higher growth rate than control group (C 2) and antibiotic treated groups respectively. Creosote treated group has shown 78% reduction in the fecal score of as compare to C 2 on 5th day after induction. No negative impact is imposed by Korean Beechwood creosote on hemogram. Significantly (P<0.05) high values of complete blood count (WBCs, RBCs, PCV, MCH and MCHC) have been observed in the diarrheic animals and persisted up to 10th day after induction whereas these parameters were in normal range in animals treated with creosote after recovery. Significantly (P<0.05) lower platelet count and total protein values have been observed in C 2 as compared to treatment groups and similar decreasing trend has been observed for albumin, globulin and A:G ratio. The blood urea nitrogen (BUN) levels in treatment groups were in normal range while it was significantly higher in C 2. Significantly low and high values of sodium (Na +) and potassium (K +) respectively, have been observed in C 2. Parallel findings between the antibiotics and Korean Beechwood creosote strongly suggest its use as an antidiarrheal agent and growth promoter for weaning piglets.

©2014 PVJ. All rights reserved

INTRODUCTION

Post weaning diarrhea is the major cause which affects the economy of pig industry (Mudronova et al., 2012). Infectious agents, lack of immunity and improper management practices are the major causes of PWD (Shoemaker et al., 2001). Disruption of intestinal epithelium by microbial or viral pathogens is among the common causes which lead to insufficient absorption of water and result into diarrhea. Infections with Salmonella serotypes are source of food borne diseases in the worldwide (Santos, 2003) and pigs are the host for Salmonella serotypes. In pigs, outbreaks mostly occur in 2 to 4 months of age. Antibiotics in therapeutics and as growth promoter led to their extensive use as feed additives. Extensive use of antibiotics led to the development of resistance and antibiotic residues in animal products. In new diarrheic syndrome, no response to antibiotics and common management practices have been reported (Kongsted et al., 2013). It made the governing bodies to put scrutiny/ ban on the use of antibiotics in animal feed (Han et al., 2007). Since 2011, South Korea Ministry for food, agriculture, forestry and fisheries has too imposed ban on the extensive use of antibiotics as feed additives.

To counter the issue of antibiotic resistance, medicinal herbs/plants are catching importance (Jung et al., 2011). Remedies from herbal origins have been in
regular use for the treatment and management of various ailments since the beginning of human civilization (Hussain et al., 2012). Although use of wood creosote as an herbal medicine against diarrhea in rats and mice has been reported (Ataka et al., 2007; Hiramoto et al., 2012) but still meager work has been done on the anti-bacterial and anti-diarrheal role of Korean traditional herbs (Bae, 2005) against PWD in piglets. There are few references which support the anti-diarrheal properties of wood creosote (Arteaga et al., 2005). The current study was planned to access the effect of Korean beechwood creosote as a substitute to antibiotics with an emphasis on its anti-diarrheal effect, to identify an alternative to maintain growth performance and control economic losses.

MATERIALS AND METHODS

Experimental design: Post weaned, six weeks old 12 piglets of Landrace breed with initial mean body weight of 11.88±0.80 kg were used for current study. Piglets were procured from a commercial supplier (Chilsung Farm, Seogwipo-si, Jeju-Do, South Korea). The experiment was approved by the animal ethics committee of the School of Applied Life Sciences. Experimental animals were kept in pig farm of Jeju National University with the ambient temperature maintained at 25±1ºC. Piglets were housed in pens with concrete flooring, a nipple bowl drinker and feeder. Piglets were offered the commercial feed (Seoul Feed, Jeju-Si, South Korea) and water ad-libitum.

Piglets were divided into 4 groups with 3 piglets in each group. The groups were designated as C1, C2, T1 and T2. In group C1, three healthy piglets without diarrhea were grouped. These animals were fed normal feed. Diarrhea was induced in the nine piglets by one shot of S. typhimurium mixed in their feed. Diarheic piglets were grouped in C2, T1 and T2 with three piglets in each group. Animals in groups C2, T1 and T2 were offered normal feed, mixed with antibiotic and creosote, respectively. SAMU CPS (Chlortetracycline, Procainpenicilnine-G and Sulfathiazole), SAMU, Median, South Korea) was supplemented to group T1 piglets at a dose rate of 0.25% of feed for 10 days. Group T2 piglets were supplemented with Korean beechwood creosote at the rate of 0.34 gm per 10 kg BW/day without any supplementation of antibiotic for 2 months. Creosote and antibiotic were administered orally by mixing in feed. Pyrogenous liquor being the active ingredient was used for the preparation of Korean beechwood creosote in the lab. Other herbal components like algenic acid, chitosan, guar gum, levam, locust bean gum and wheat flour were also used to prepare the creosote.

Body weight gain and feces score: The body weight of individual piglets was measured at day zero and subsequently at weekly intervals up to two months of supplementation. In the end of the study per cent increase in body weight for respective groups were calculated. The severity of diarrhea was noted visually and scores were given on the basis of consistency of the feces on a standardized scale of 0-3 as described by Cox et al. (1987). Watery feces was awarded a score- “3” followed by loose feces with score- “2”, semi-solid feces was scored “1” and the condition when there was no diarrhea was scored “0”.

RESULTS

Effect of creosote on body weight gain and feces score: Each individual animal was weighed weekly from day “0” to till completion of treatment. Piglets treated with creosote have shown 11.52 and 3.12% higher growth rate than control group (C2) and antibiotic treated group (T1) respectively (Fig. 1). The lowest rate of body weight gain has been recorded in C2 group which may be due to persistent dehydration and reduced appetite for 7 days.

During the experiment severe diarrhea had been observed in C2, T1 and T2 groups up to 3rd day after induction (Fig. 2). The significant recovery (P<0.05) was observed in T1 and T2 groups from 5th day onwards, whereas in C2 group severity of diarrhea was observed up to 7th day after induction.

Complete blood count: No negative impact has been imposed by Korean beechwood creosote on hemogram (Table 1). Parallel trends between the groups fed with the antibiotic and creosote has been observed. Both the treatment groups did not show any significant difference (P>0.05) in hemogram during the recovery phase, which indicated about the efficacy of creosote with respect to antibiotic. A sharp increase has been observed in the number of WBCs on the 3rd day of induction of diarrhea in C2, T1 and T2 groups (Table 1). From 5th day onwards level of WBCs started decreasing in T1 and T2 groups, which were in normal range by 10th day in all the groups.
A regular increasing trend has been observed for RBCs in the C2 (Table 1). Till 5th day non-significant difference for RBCs has been observed among control and treatment groups whereas C2 group still had significantly high RBCs till 10th day, indicating that severe loss of water during diarrhea led to hemo-concentration. High levels of hemoglobin by 10th day in negative control group indicated the dehydration in piglets due to the fluid loss from vascular compartment and confirmed hemo-concentration (Table 1).

Progressive increase in HCT with the increase in the severity of disease in C2 group has attributed dehydration. A significantly (P<0.05) high values of HCT have been observed in negative control group (Fig. 3). Significantly high values for the MCV, MCH and MCHC have been observed in diarrheic control group up to 3rd day as compare to treatment groups (Table 1). Overall decreasing trend except on 5th day has been observed for platelet count in negative control group. A significantly high values (P<0.05) have been observed in C2 group up to 5th day for STP. The significant differences among control and treatment groups have been observed for fibrinogen but no regular trends have been observed among treatment groups (Table 1).

DISCUSSION

PWD causes severe morbidity and mortality in the piglets. It has been listed as one of the major mainspring which affects the economy of pig industry (Mudronova et al., 2012). Housing, nutrition, immune level of the piglets and managemental practices contribute towards PWD (Shoemaker et al., 2001). Pigs have been enlisted as the configured host for *Salmonella* serotypes and these are one of the most common bacteria causing diarrhea in piglets. Extensive use of antibiotics causes resistance and its residues in animal products. Therefore, the controlling authorities imposed ban on the use of antibiotics in animal feed (Han et al., 2007). Even the ministry for food, agriculture, forestry and fisheries of South Korea has too strongly implemented ban on the extensive use of antibiotics as feed additives. Therefore, in the current study the anti-diarrheal effect of Korean beechwood creosote was judged.

It has been reported that pigs suffering from *S. typhimurium* infection grew poorly over a period of two to three weeks (Thomson et al., 1998). Therefore, the
significantly high body weight gain in creosote supplemented animals (T2) potentially indicates that Korean beechnough creosote has better growth promoter like activity even than the antibiotics. In our study, 78% reduction in the fecal score of the group treated with creosote as compare to control group has been observed on 5th day after induction and this finding is in line with the results obtained by Casey et al. (2007) who reported 77% reduction in the fecal score. Therefore, this parameter of our study has shown the significant efficacy of Korean beechnough creosote for the recovery of diarrhea.

<table>
<thead>
<tr>
<th>Day of observation</th>
<th>Group</th>
<th>WBC (10³/µl)</th>
<th>RBC (10¹²/µl)</th>
<th>HGB (g/dl)</th>
<th>MCV (fl)</th>
<th>MCH (pg)</th>
<th>MCHC (g/dl)</th>
<th>PLT (10³/µl)</th>
<th>STP (g/dl)</th>
<th>Fibrogen (10⁶/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Day</td>
<td>C1</td>
<td>16.53±0.70</td>
<td>6.32±0.51</td>
<td>11.50±0.27</td>
<td>64.67±0.82</td>
<td>19.37±0.31</td>
<td>29.97±0.06</td>
<td>457.03±13.86</td>
<td>4.80±0.40</td>
<td>0.27±0.23</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>15.47±1.50</td>
<td>6.57±1.33</td>
<td>11.90±0.55</td>
<td>63.07±0.65</td>
<td>18.87±0.45</td>
<td>29.93±0.70</td>
<td>492.00±48.11</td>
<td>5.27±0.30</td>
<td>0.35±0.12</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>17.59±0.61</td>
<td>6.67±0.51</td>
<td>11.60±0.29</td>
<td>64.33±0.83</td>
<td>18.94±0.12</td>
<td>30.70±0.40</td>
<td>543.33±117.72</td>
<td>4.80±0.40</td>
<td>0.33±0.12</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>15.40±0.33</td>
<td>6.40±0.71</td>
<td>11.60±0.40</td>
<td>62.70±0.82</td>
<td>18.33±0.71</td>
<td>30.37±0.70</td>
<td>569.33±151.77</td>
<td>4.87±0.31</td>
<td>0.20±0.20</td>
</tr>
<tr>
<td>3rd Day</td>
<td>C1</td>
<td>22.33±6.96</td>
<td>6.36±0.06</td>
<td>11.73±1.02</td>
<td>63.70±2.85</td>
<td>18.60±0.18</td>
<td>29.20±0.60</td>
<td>461.00±152.23</td>
<td>5.13±0.30</td>
<td>0.47±0.12</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>28.37±11.91</td>
<td>6.50±0.54</td>
<td>15.61±1.50</td>
<td>59.63±4.27</td>
<td>18.00±0.79</td>
<td>30.27±0.76</td>
<td>564.67±98.48</td>
<td>5.53±0.61</td>
<td>0.33±0.12</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>27.43±3.02</td>
<td>6.84±0.55</td>
<td>15.20±1.60</td>
<td>59.33±2.18</td>
<td>30.12±0.32</td>
<td>59.23±1.53</td>
<td>5.20±0.20</td>
<td>0.40±0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>21.63±5.26</td>
<td>6.07±3.12</td>
<td>12.97±1.11</td>
<td>64.87±1.97</td>
<td>29.38±0.97</td>
<td>515.00±172.39</td>
<td>4.70±0.31</td>
<td>0.27±0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>30.73±1.50</td>
<td>6.98±0.74</td>
<td>15.23±3.60</td>
<td>61.60±1.40</td>
<td>18.97±0.06</td>
<td>30.80±0.72</td>
<td>486.67±45.35</td>
<td>5.73±0.83</td>
<td>0.33±0.23</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>24.33±6.60</td>
<td>6.97±0.80</td>
<td>13.50±0.82</td>
<td>59.07±4.01</td>
<td>17.70±0.95</td>
<td>29.97±0.42</td>
<td>505.33±99.81</td>
<td>5.73±0.42</td>
<td>0.33±0.23</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>25.27±6.17</td>
<td>7.18±1.46</td>
<td>13.90±2.56</td>
<td>59.87±2.08</td>
<td>18.07±0.78</td>
<td>30.17±0.67</td>
<td>583.00±259.70</td>
<td>5.67±0.42</td>
<td>0.33±0.12</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>21.57±4.50</td>
<td>6.68±0.54</td>
<td>13.13±0.44</td>
<td>61.70±2.56</td>
<td>18.20±0.66</td>
<td>29.50±1.07</td>
<td>473.33±160.68</td>
<td>5.80±0.20</td>
<td>0.40±0.20</td>
</tr>
<tr>
<td>7th Day</td>
<td>C1</td>
<td>22.53±4.44</td>
<td>6.25±0.35</td>
<td>11.77±0.38</td>
<td>63.97±3.30</td>
<td>18.87±1.21</td>
<td>29.50±0.76</td>
<td>390.67±106.39</td>
<td>5.27±0.23</td>
<td>0.27±0.12</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>27.54±7.45</td>
<td>7.20±0.60</td>
<td>14.23±1.08</td>
<td>61.87±1.76</td>
<td>18.37±2.25</td>
<td>29.70±0.40</td>
<td>439.00±114.45</td>
<td>5.93±0.70</td>
<td>0.40±0.23</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>21.11±3.59</td>
<td>6.86±0.76</td>
<td>12.70±0.70</td>
<td>59.23±4.48</td>
<td>17.46±1.08</td>
<td>29.59±0.49</td>
<td>596.00±124.33</td>
<td>5.87±0.31</td>
<td>0.20±0.23</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>20.50±4.19</td>
<td>6.75±0.43</td>
<td>12.70±0.46</td>
<td>64.77±2.47</td>
<td>18.53±0.64</td>
<td>28.60±0.46</td>
<td>460.00±81.46</td>
<td>5.73±0.12</td>
<td>0.33±0.12</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>24.33±4.99</td>
<td>7.26±0.44</td>
<td>13.90±0.70</td>
<td>62.40±1.71</td>
<td>18.57±1.15</td>
<td>29.73±0.17</td>
<td>368.00±206.57</td>
<td>6.13±0.31</td>
<td>0.33±0.12</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>23.53±4.26</td>
<td>6.51±0.34</td>
<td>11.90±1.12</td>
<td>60.80±1.56</td>
<td>17.80±1.14</td>
<td>29.30±0.63</td>
<td>550.67±310.72</td>
<td>5.87±0.12</td>
<td>0.33±0.12</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>19.30±4.94</td>
<td>6.89±0.48</td>
<td>12.53±3.57</td>
<td>61.47±1.13</td>
<td>18.20±0.05</td>
<td>29.13±0.15</td>
<td>624.00±147.44</td>
<td>5.87±0.42</td>
<td>0.43±0.21</td>
</tr>
</tbody>
</table>

Mean±SD values within a column not sharing a common superscript letter differ significantly (P<0.05).
Diarrhea caused by *Salmonella* is associated with increased vascular permeability leading to increased influx of neutrophils (Zhang et al., 2003). Actually, neutrophils cause necrosis of the intestinal epithelium which results into leakage of extravascular fluid in the form of diarrhea. While observing the pattern shown by the hemogram in the current study, creosote has shown the equal efficacy with respect to antibiotics. The normalization of leukocyte count after 5th day onwards indicates the clearance of bacterial infection with complete recovery.

Normalization of RBC count in treatment groups and significantly high number of circulating RBCs till 10th day in C2 group indicated severe loss of water during diarrhea which might have caused hemo-concentration (Hassan et al., 2013). Mavenyengwa et al. (2010) also reported significant increase in the number of circulating RBCs from 7th day onwards in diarrheic cattle. Even 5% increase in PCV also has been reported in case of dogs suffering from hemorrhagic diarrhea (Reineke et al., 2013). A finding that hematopoietic change in piglet diarrhea has reported increased hemoglobin, PCV and serum finding that hemato- biochemical change in piglet diarrhea be due to decreased glomerulo-filtration rate and catabolic breakdown of epithelia occurring during diarrhea. Blood biochemical analysis of creosote treated animals with respect to healthy animals has shown no significant difference for the blood plasma chemistry. Wood creosote by blocking the Cl channel on the intestinal epithelium effectively inhibits intestinal secretions induced by enterotoxins. It is also reported to decrease the intestinal motility accelerated by mechanical, chemical or electrical stimuli by the inhibition of the Ca2+ influx into the smooth muscle cells. The no particular trend for phosphorus levels has left any impact, although a decreased phosphorus level during diarrhea has been reported in cattle (Mavenyengwa et al., 2010). Recovery of electrolyte balance in creosote treated piglets during the current study has indicated that creosote is effective against diarrhea and the similar results have been reported by Ataka et al. (2003).

The incidence of resistance in *E. faecalis* against most of the antimicrobials which are used for growth promotion in livestock is more prevalent in Korea than in European countries (Hwang et al., 2009). Aparamycin sulphate has also been used as feed additives to control bacterial enteritis in weaning pigs but because of resistance, their use has been banned (Shoemaker et al., 2001). It is also reported that wood creosote inhibits STa-induced fluid secretion in the jejunum (Ogata et al., 2001). Acetyl choline and Ba2+ induced tonic contractions of longitudinal and circular muscles of ileum are also inhibited by creosote which indicates that anti-diarrheal activity of wood creosote is because of its anti-secretory and anti-motility effects.

Conclusion: The parallel findings of body weight gain, feces score, hematocrit values and blood chemistry strongly suggest the use of Korean beechwood as a substitute to antibiotics, for its use as an antidiarrheal agent and growth promoter for weaning piglets. Our results would have significant impact on the economics of pig farming/industry, provide an antibiotic replacement option and most importantly would be helpful to control the possible antibiotic health hazards in consumer.

Acknowledgement: This research was financially supported by the Ministry of Knowledge Economy (MKE) and Korea Institute for Advancement of Technology (KIAT) through the Research and Development for Regional Industry, Republic of Korea.

REFERENCES

