Low Field Magnetic Resonance Imaging Characteristics of Experimental Canine Intracranial Hemorrhage

Jimo Jeong¹, Yechan Jung²,³, Eunseok Jeong¹, Youngkwon Cho³ and Kichang Lee*¹

¹Department of Veterinary Clinical Service, Chonbuk National University Specialized Campus: 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596 Republic of Korea; ²Research Ethics Center Office of Research Management, Korea University, Seoul, 02841, Korea; ³College of health sciences, Radiologic science, Cheongju University, 298, Daesung-ro, Sandang-gu, Cheongju, 360-764 Republic of Korea
*Corresponding author: kclee@jbnu.ac.kr

ARTICLE HISTORY (16-010)
Received: January 21, 2016
Accepted: March 03, 2017
Published online: May 9, 2017

Key words:
Canine cerebral hemorrhages
Dog
Gradient echo sequences
Low field
Magnetic resonance
Signal

ABSTRACT
Magnetic resonance (MR) evaluation of intracranial hemorrhage is often challenging due to the variable appearance of hemorrhage, which depends on multiple factors. The aim of this study was to establish MR appearance of cerebral hemorrhages in dogs using low magnetic field and the efficacy of T2*-Gradient echo sequence for hemorrhage detection. Eight clinically normal beagle dogs, weighing approximately 9kg each were used. After a baseline MR examination, an intracranial hematoma was produced. MR examination was performed just after development of hemorrhage model and then at 1 to 2 day intervals for 30 days using low field MR (0.25 T). Sagittal images were acquired to select reproducible slice positions for transverse images. Sequences include spin echo (SE) T2, fluid attenuated inversion recovery (FLAIR), short tau inversion recovery, SE T1, and T2*-Gradient echo (GRE) images. The acquired MR images were compared subjectively to evaluate the signal changes. Signal-to-noise ratio was also measured and compared. Signal of the lesion was significantly hypo-intense in STIR and hyper-intense in T1W at day 3 after hemorrhage creation. The signal intensity of the hemorrhage gradually decreased in T1W images from day 3 to day 20. On T2W and FLAIR images, signal intensity was hyper-intense compared to normal and decreased gradually. No significant hypo-intense signal was seen on T2*-GRE image during examination of hemorrhage. This study shows that signal changes in intracranial hemorrhage do not follow the guidelines for hemorrhage interpretation in T1W and T2W images using low field magnets, except acute stage. T2*-GRE imaging maybe less useful in hemorrhage detection.

©2017 PVJ. All rights reserved

INTRODUCTION
There are multiple reports of the MR imaging features of intracranial hemorrhage in humans and in intracranial hemorrhagic animal models. These reports indicate that the appearance of intracranial hemorrhage on MR imaging depends primarily on the age of the hematoma and the type of MR sequence, such as T1 weighted (T1W) or T2 weighted (T2W) sequences (Bradley Jr, 1993). These reports also suggest five distinct stages of hemorrhage related to hemoglobin oxidation (Bradley Jr, 1993). Other reports using intracranial hemorrhagic animal models documented the effects of various parameters including size of the lesion, source (arterial, venous), location (ventricular, epidural, subdural, parenchymal), time from onset, and field strength. They found that GRE imaging is highly useful in detecting and delineating hemorrhage with 0.6T and 1.5T magnets (Weingarten et al., 1991; Jung et al., 2015).

However, time-dependent evaluation of MR-imaging patterns has not yet been defined in dogs, especially using low magnetic fields. The aims of this study were to evaluate and define signal intensity changes in canine intracranial hemorrhage on T2W, T1W, FLAIR and STIR sequences, and to evaluate the ability of T2*-GRE sequences to detect hemorrhage using low magnetic fields.
MATERIALS AND METHODS

The study was conducted prospectively from November to December 2013. The treatment of the experimental animals was approved by the Institutional Animal Care and Use Committees (IACUC) of Chonbuk National University. Eight healthy female beagle dogs with a mean age of 6 years and a mean body weight of 9 kg were used to induce experimental intracranial hemorrhage. We performed a general and neurological examination and complete blood work prior to hemorrhage induction. A venous catheter was placed in the cephalic vein, general anesthesia was induced with the combination of medetomidine and tiletamine/zolazepam (combination of Tomidin® (Provet, Veterinary Products Ltd., Istanbul, Turkey) and Zoletil 50® (Virbac Laboratories, Carros, France), 0.02 ml/kg intravenously). After endotracheal intubation, anesthesia was maintained via 1.5-2% isoflurane (Hana Pharm. Co., Kyonggi-Do, South Korea) and oxygen. In creating a canine intracranial hemorrhage model, the single blood injection model was used as described previously (Manaenko et al., 2011, Weingarten et al., 1991). Using an aseptic technique, a burr hole was surgically created in the parietal bone, with care taken to avoid penetrating the dura mater. After the burr hole was cleaned, 2–3 ml of blood was collected from the femoral artery of each dog. This blood was immediately injected into the temporal lobe through the burr hole with a saline-filled 24-gauge needle at a depth of 2 cm from the inner calvaria. The needle was then removed, and the burr hole was covered with bone wax. (Fig. 1) Using autologous arterial blood, eight intracranial hemorrhages were successfully created. The percentage O2 saturation and blood pH were measured using a Vet stat electrolyte and blood gas analyzer (IDEXX, Westbrook, Maine, USA). The Partial Thromboplastin time (PT) and Activated Partial Thromboplastin Time (APTT) were measured with a cassette-based coagulation analyzer (DX Coag, IDEXX Laboratories).

MR scanning was performed using a 0.25T (Vet Grande, Esaote, Italy) system and a solenoid knee coil. Five sequences were used to acquire images of the dog brains at 1-day intervals for 30 days. The sequences included transverse T2-weighted (T2W: turbo spin echo (4260/90; TR/TE)), T1-weighted (T1W: spin echo (860/18; TR/TE)), T2+-gradient echo (1105/22; TR/TE), fluid-attenuated inversion recovery (FLAIR) (7140/90/17500; TR/TE/IR), and short tau inversion recovery (STIR) (5250/80/120; TR/TE/IR). Acquisition parameters are shown in Table 1. The slices were 3.5 mm thick for every day except day 21. Hemorrhagic lesions of all subjects were acquired every day from day 0 to day 30. The signal intensity of lesion was subjectively determined by multiple radiologists. Initially, the lesions were hyper-intense in T2W images and hypo-intense in T1W images compared with the cerebral cortex in all subjects, and signal intensity was homogenous in all sequences. Between 1 and 3 days after creation, the lesion became partially hyper-intense in T1W images; the hyper-intense signal was sustained in T2W images, though signal intensity of hemorrhagic lesions subjectively decreased in all subjects. Initial mild T1 hyper-intensity observation time in T1W images differed between subjects. The development of partial T1 hyper-intensity in T1W images on day 3 in 6 subjects showed readily decreased SI, but two subjects showed increased SI until day 7. This hyper-intensity changed to iso-intensity or mild hyper-intensity in T1W images at day 21. Hemorrhagic lesions of all subjects showed decreased T2 hyper-intensity after day 1, and this hyper-intensity was sustained even though lesion size was decreased at 30 days (Fig. 4 & 5).

In FLAIR images, the lesions were initially homogenous and hyper-intense, with the hyper-intensity being sustained in FLAIR images during the study period until lesion size became focal at day 21 (Fig. 7). In STIR images, the hemorrhagic lesion was hyper-intense at day 1. Between 1 and 3 days, a partial hypo-intense to null signal developed in all subjects, indicating a significant heterogeneous signal pattern in STIR images (Fig. 6). No significant susceptibility artifact was visible in T2+-GRE images, but hyper-intensity was shown until lesion size became focal and difficult to detect at day 21 (Fig. 8).

After development of a partial T1 hyper-intense signal and STIR hypo-intense to null signal, hemorrhagic lesions had a heterogeneous signal intensity.

RESULTS

Hemorrhagic lesions less than 2cm*1cm were successfully created in 8 beagles and were located in the frontal and temporal lobe region. Hemorrhagic lesion was observed over 3 to 4 slices in the transverse plane MR images (Fig. 2 & 3). The subjective assessments of chronological MR characteristics of eight canine intracranial hemorrhages by three radiologists are summarized in Table 2. There are slight differences in section plane between examinations of the same subject at different times. Initially, the lesions were hyper-intense in T2W images and hypo-intense in T1W images compared with the cerebral cortex in all subjects, and signal intensity was homogenous in all sequences. Between 1 and 3 days after creation, the lesion became partially hyper-intense in T1W images; the hyper-intense signal was sustained in T2W images, though signal intensity of hemorrhagic lesions subjectively decreased in all subjects. Initial mild T1 hyper-intensity observation time in T1W images differed between subjects. The development of partial T1 hyper-intensity in T1W images on day 3 in 6 subjects showed readily decreased SI, but two subjects showed increased SI until day 7. This hyper-intensity changed to iso-intensity or mild hyper-intensity in T1W images at day 21. Hemorrhagic lesions of all subjects showed decreased T2 hyper-intensity after day 1, and this hyper-intensity was sustained even though lesion size was decreased at 30 days (Fig. 4 & 5).

In FLAIR images, the lesions were initially homogenous and hyper-intense, with the hyper-intensity being sustained in FLAIR images during the study period until lesion size became focal at day 21 (Fig. 7). In STIR images, the hemorrhagic lesion was hyper-intense at day 1. Between 1 and 3 days, a partial hypo-intense to null signal developed in all subjects, indicating a significant heterogeneous signal pattern in STIR images (Fig. 6). No significant susceptibility artifact was visible in T2+-GRE images, but hyper-intensity was shown until lesion size became focal and difficult to detect at day 21 (Fig. 8). After development of a partial T1 hyper-intense signal and STIR hypo-intense to null signal, hemorrhagic lesions had a heterogeneous signal intensity.

Table 1: Acquisition parameters for the Transverse imaging

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Plane</th>
<th>TR (ms)</th>
<th>TE (ms)</th>
<th>FOV (mm)</th>
<th>Matrix</th>
<th>Thickness (mm)</th>
<th>Flip (°)</th>
<th>NEX</th>
<th>TI</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2W</td>
<td>Trans</td>
<td>4260</td>
<td>90</td>
<td>200*200</td>
<td>288*192</td>
<td>3.5</td>
<td>90</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>T1W</td>
<td>Trans</td>
<td>860</td>
<td>18</td>
<td>288*215</td>
<td>288*192</td>
<td>3.5</td>
<td>90</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FLAIR</td>
<td>Trans</td>
<td>7140</td>
<td>90</td>
<td>200*200</td>
<td>192*192</td>
<td>3.5</td>
<td>90</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>STIR</td>
<td>Trans</td>
<td>5250</td>
<td>80</td>
<td>200*200</td>
<td>256*192</td>
<td>3.5</td>
<td>90</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>T2G-GRE</td>
<td>Trans</td>
<td>1105</td>
<td>22</td>
<td>200*200</td>
<td>256*192</td>
<td>3.5</td>
<td>90</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

TR, repetition time; TE, echo time; FOV, field of view; TA, acquisition time; NEX, number of acquisitions; TI, inversion time; TSE, turbo spin echo; STIR short tau inversion recovery.
Histopathologic results showed cerebral inflammation by RBC clot, hemosiderin in macrophages, formation of gitter cells, angiogenesis around the fibrin clot, and fibrotic scar formation. The histopathologic exam showed no significant correlation with MR imaging.

DISCUSSION

The MR appearance of canine intracranial hemorrhage with a 0.25T low-field magnet was presented in this study. The results of time changes in MR appearance of canine intracranial hemorrhage in low magnetic fields do not agree with prior descriptions (Weingarten et al., 1991, Bradley Jr, 1993). Time-related changes on MR imaging of hyperacute to chronic hematomas have been used as criteria for selecting treatment in human medicine (Bradley Jr, 1993). There are only a few case reports regarding MR imaging features of intracranial hemorrhage in animals (Thomas et al., 1997, Vernau et al., 2002, Tamura et al., 2006, Dennler et al., 2007, Fulkerson et al., 2012). These cases describe subacute hematomas associated with cerebral vascular malformation, hemorrhage within an arachnoid cyst, metastatic hemangiosarcoma causing cerebral hemorrhage, and cerebral microbleeds in four dogs (Thomas et al., 1997, Vernau et al., 2002, Dennler et al., 2007, Fulkerson et al., 2012). Only one case report describes sequential intracranial hematoma in a dog (Tamura et al., 2006). In this report, the signal intensity changed to hyper-intense on T1-weighted images, while the center of the lesion changed to hypo-intense, then hyper-intense with a hypo-intense rim on T2-weighted images with a 0.2T permanent magnet because of hemoglobin oxidation in a dog with seizures (Tamura et al., 2006).

An in vivo canine animal model was believed to be an ideal method for studying intracranial hemorrhage because the precise time from hemorrhage to MR imaging could be determined (Weingarten et al., 1991). Theoretically, the source, size, and location of the hematoma can be closely controlled (Weingarten et al., 1991). The induced hemorrhagic lesions in eight dogs had slightly different shapes, sizes, and distributions. Prior reports stated that variability in hematoma size was impossible to control, as dissection of blood along the injection tract is a significant limitation in this animal model (Weingarten et al., 1991). In our experience, this is because the volume of backdraft in the blood injection at induction was slightly different in each experiment. The induced hemorrhagic lesion was distributed in the temporal to frontal lobes. This wide distribution is another limitation of animal models. To avoid influence of blood source, autologous femoral arterial blood was used for hemorrhage induction.

All animals initially showed ipsilateral strabismus and stuporous mental status; however, after 3 days of induction, they recovered normal mental status and showed normal physical condition until the end of the study period.

Table 2: Summary of common findings in signal intensity changes of intracranial hemorrhage

<table>
<thead>
<tr>
<th>Stage</th>
<th>Time</th>
<th>T1W</th>
<th>T2W</th>
<th>FLAIR</th>
<th>STIR</th>
<th>T2*-GRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperacute</td>
<td>(<24hr)</td>
<td>Iso</td>
<td>Hyper (mild heterogeneous)</td>
<td>Hyper</td>
<td>Hyper</td>
<td>Iso</td>
</tr>
<tr>
<td>Acute</td>
<td>(1-3day)</td>
<td>Mild Partial Hyper</td>
<td>Hyper (But decreased compared to day 0)</td>
<td>Hyper</td>
<td>Hyper + partial hypo</td>
<td>Hyper to iso</td>
</tr>
<tr>
<td>Early</td>
<td>(3+ days)</td>
<td>Partial Hyper</td>
<td>Hyper (But decreased compared to day 0)</td>
<td>Hyper</td>
<td>Hyper + partial hypo</td>
<td>Hyper to iso</td>
</tr>
<tr>
<td>Late</td>
<td>(7+ days)</td>
<td>Hyper Partial Hyper</td>
<td>Hyper (But decreased compared to day 0)</td>
<td>Hyper Partial hypo</td>
<td>Hyper to iso</td>
<td></td>
</tr>
<tr>
<td>Late</td>
<td>(20+ days)</td>
<td>Hyper to Iso</td>
<td>Hyper (lesion size is decreased to focal)</td>
<td>Hyper Hyper</td>
<td>Hyper to iso</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>(21+ days)</td>
<td>Iso</td>
<td>Focal Hyper intense</td>
<td>Hyper Hyper (mild heterogenous)</td>
<td>Iso</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1: A) burr hole (*) on parietal bone B) covered with bone wax on burr hole after hemorrhage induction.

Fig. 2: Transverse MR images of successfully induced intracranial hemorrhagic lesion on different sequences at Day 0. A) T2W B) FLAIR C) STIR D) T1W.

Fig. 3: Transverse MR images of successfully induced intracranial hemorrhagic lesion on Day 0. A) T2*-GRE, the air introduction during surgery was seen in the lesion (asterisk).
During days 1-3, signal intensity changes in the hemorrhagic lesion in T2W and T1W images were similar to prior reports of the acute stage. (Thomas et al., 1997, Vernau et al., 2002, Tamura et al., 2006, Dennler et al., 2007, Fulkerson et al., 2012). However, hyper-intensity in T2W images readily decreased after day 1, while hyper-intensity compared to the adjacent cerebral cortex was sustained until lesion detection became difficult as the lesion size became focal. The developed partial hyper-intensity in T1W images readily decreased but was sustained until lesion detection became impossible around day 21. This suggests that no significant stage discrimination in intracranial hemorrhage was visible in vivo. We believe that prior descriptions of five stages of hemorrhage are theoretical based on hemoglobin degradation. Using hyper-intensity in T1W images for hemorrhage detection might be very useful until 21 days after onset.

On T2W images, the hemorrhagic lesion changed to a mild hypo-intense state after day 1, so the signal pattern became mildly heterogeneous. Because the partial SI change was mild, it was still hyper-intense compared to the adjacent cerebral cortex. Prior reports described that diminished development of hypo-intensity was observed with a 0.6T magnetic field compared with a 1.5T magnetic field (Weingarten et al., 1991). These hypo-intensities in T2W images of acute hematoma can be explained by multiple hypotheses. Paramagnetic deoxy-hemoglobin may accumulate within the relatively hypoxic hematoma center. Hemoconcentration, clot formation, and retraction and diminution of RBC volume all may produce T2 shortening. A case report that performed sequential MR imaging in a dog with intracranial hematoma observed that the SI in T2WI changed from hypo-intense to hyper-intense at 7-10 days after onset (Tamura et al., 2006). That, however, was not observed in our study.

The partial signal change was an unexpected finding. Hypo-intense to null signals was seen in STIR sequences at day 3, which corresponds to hyper-intense signal changes in T1W images. These signal changes were explainable with T1 time shortening of met-hemoglobin (Dürr et al., 1997, Pang et al., 2010). Human studies have revealed that time-related changes in SI always occur at the edge of the mass and spread toward the center (Brooks et al., 1989; Bradley Jr, 1993). A veterinary case report involving a dog also showed central SI change in hematoma (Tamura et al., 2006). However, partial SI changes in T1WI, T2WI, and STIR images did not define characteristics of chronological MR changes in intracranial hemorrhage. This might be the main cause of conflicting descriptions of time-related SI changes on MR images of hemorrhage.

FLAIR images have high sensitivity for several brain diseases in human beings and animals (Hajnal et al., 1992, Kates et al., 1996, Falzone et al., 2008). FLAIR is considered to be a routine brain MR protocol (Noguchi et al. 1997, Bakshi et al. 1999, Linfante et al. 1999, Stuckey et al. 2007; Cherubini et al., 2008). FLAIR images show hyper-intensity in hemorrhagic lesions. There are several hypotheses regarding these hyper-intense signals, and one of them is related to the role of protein in the blood (Bakshi et al., 1999). The FLAIR technique produces strong T2WI that are highly sensitive to T2 prolongation.
in tissue, likely resulting from high protein content (Bradley Jr, 1993, Melhem et al., 1997).

STIR is a fat-suppressing technique with high sensitivity, low signal to noise ratio, excellent grayscale contrast (Konar et al., 2011). STIR images showed partial hypo- to null signal at 1–3 days, which is consistent with partial hyper-intensity in T1W images. Because of deoxy- and met-hemoglobin conversion, T1 time shortening occurred in a similar pattern to that of Fat T1 time (Dürer et al., 1997, Pang et al., 2010). This is assumed to suppress the signal intensity in STIR images. In this work, the suppressed signal intensity change of hemorrhagic lesion was sustained until lesion size became focal.

Around 21 days, lesion detection became difficult because lesion size changed to focal in T2W, T1W, and T2*-GRE images. However, the lesion was still detectable in FLAIR and STIR images due to better lesion detection, which coincides with prior reports (Bakshi et al., 1999; Hermier et al., 2001; Kato et al., 2002; Hiwatashi et al., 2003; Tsushima et al., 2003; Young et al., 2015).

Contrary to prior reports, it can be difficult to detect hemorrhages with low magnetic fields (Thomas et al., 1997, Vernau et al., 2002, Demner et al., 2007, Fullkerson et al., 2012, Lowrie et al., 2012). Hemorrhagic lesions in T2*-GRE showed hyper-intensity compared to the cerebral cortex in the present study. In human medicine, T2*-GRE sequences showed susceptibility artifacts of hemorrhagic lesions in both 1.5T magnetic fields and 0.6T magnetic fields (Weingarten et al., 1991). This contradiction was unexpected, so in our work, we changed the sequence parameters during the study period in order to enhance the susceptibility artifact; however, this attempt was unsuccessful. This may be because susceptibility effects are weaker at low field than at high field (Konar et al., 2011). This difference might also be a limitation of a 0.25T low magnetic field. Hemorrhage detection on T2*-GRE in a 0.25T low magnetic field may not be feasible compared to detection in a high field. The relationship between histopathologic and imaging changes is still unclear. It is uncertain whether there is a direct correlation between severity of histopathologic changes and MR signal. Further studies are needed to determine a specific relationship.

Conclusions: This study suggests a partial signal intensity change in T1W and T2W sequences was consistent with signal intensity change in the acute stage in previous reports. Except in the acute stage, there was no significant discrimination of stages with time in this study. T2*-GRE sequence imaging in hemorrhagic lesion was less useful in this study, especially with a 0.25T low field. This result increases the understanding of chronological low-field MR characteristics of canine intracranial hemorrhage caused by traumatic or vascular disease and provides guidelines for MR interpretation of hemorrhage with time in low magnetic fields.

Authors contribution: KL and JJ contributed to design the entire experiment. JJ, YJ and JE executed the experiment. JJ, KL and YC participated in image analysis, count rate calculation, and statistical analysis. All authors interpreted the data, critically revised the manuscript for important intellectual contents, approved the final version and agreed to publication.

Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF2013R1A1A4A01007690).

REFERENCES

