

Pakistan Veterinary Journal

ISSN: 0253-8318 (PRINT), 2074-7764 (ONLINE) DOI: 10.29261/pakvetj/2019.083

RESEARCH ARTICLE

ACTH Induces Oxidative Stress and Decreases DNA Methylation of *Fkbp5* in Suhuai Sow

Qiannan Weng¹, Bojiang Li¹, Zequn Liu², Kaiqing Liu¹, Wangjun Wu^{1*} and Honglin Liu^{1*}

¹College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China ²Liaoning Province Bureau of Livestock Product Safety Supervision, Shenyang 110003, China *Corresponding author: wuwangjun2012@njau.edu.cn; liuhonglin@njau.edu.cn

ARTICLE HISTORY (17-064) A B S T R A C T

Received:February 20, 2017Revised:August 04, 2017Accepted:August 17, 2017Published online:June 22, 2019Key words:ACTHFkbp5MethylationOxidative stress

Hypothalamic-pituitary-adrenal (HPA) axis plays an important role in stress response. However, in Suhuai sows, the relationship between glucocorticoid and oxidative stress is not yet understood. We found that malondialdehyde (MDA) level was increased, whereas the activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), were decreased after ACTH treatment in Suhuai sow. Moreover, glutathione (GSH) level and total antioxidant capacity (T-AOC) were also decreased upon ACTH treatment. Moreover, we found that mRNA expression levels of antioxidant enzymes such as *SOD, CAT*, and *GPX*, were down-regulated in the ACTH group. We observed that the mRNA expression of glucocorticoid-responsive elements (GRE) such as *CXCR4*, *DUSP1*, *IL7R*, *TXNIP*, and *Fkbp5* were upregulated, whereas DNA methylation in intron 6 of *Fkbp5* was reduced by ACTH administration. Hence, our findings suggest that ACTH induces oxidative stress and increases the expression level of *Fkbp5* by decreasing DNA methylation in the GRE region in Suhuai sow.

©2017 PVJ. All rights reserved **To Cite This Article:** Weng Q, Li B, Liu Z, Liu K, Wu W and Liu H, 2019. ACTH induces oxidative stress and decreases DNA methylation of *Fkbp5* in suhuai sow. Pak Vet J, 39(3): 401-405. <u>http://dx.doi.org/10.29261/pakveti/2019.083</u>

INTRODUCTION

The production and secretion adrenocorticotropic hormone (ACTH) from the anterior pituitary and that of the glucocorticoid hormones cortisol or corticosterone (CORT) from the adrenal gland are controlled by the HPA axis of the neuroendocrine system (Spencer and Deak, 2017). The HPA axis stimulates the release of glucocorticoid hormones from the adrenal cortex in response to stress (de Ouervain et al., 2016). Glucocorticoid receptors (GRs), one of the widely expressed intracellular proteins, regulate cellular responses by binding to specific glucocorticoid response elements (GREs) in the DNA or by via protein interactions non-genomic mechanisms (Srinivasan and Lahiri, 2016). For example, the chaperones such as heat shock protein 70 and 90 interact with GR protein and influence its assembly and activity (Kirschke et al., 2014). Previous study has shown that glucocorticoid hormones can cause stress (Spiers et al., 2014). For example, dexamethasone (Dex), a synthetic glucocorticoid that mimics the effects of the natural steroid cortisol, induces oxidative stress (Min et al., 2016).

Oxidative stress, which arises from the imbalance of reactive oxygen species (ROS) production and elimination by antioxidant systems, exerts damaging effects on the cellular functions (Newsholme *et al.*, 2016). Oxidative

stress is associated with recurrent pregnancy loss, defective embryogenesis, molecular and structural damages in oocytes and granulosa cells, and accelerated oocyte aging (Agarwal *et al.*, 2012). In addition, ROS influences folliculogenesis, oocyte maturation, and corpus luteum and uterine function (Agarwal *et al.*, 2008). H₂O₂ concentrations and antioxidant enzymatic activity are reduced during follicle development in ovary (Basini *et al.*, 2008).

Apart from hormones, several molecules are involved in the regulation of stress response. One such molecule is FK506 binding protein 51 (FKBP51 or FKBP5), a 51-kDa protein, which is a member of family of immunophilins or FK506 binding proteins (FKBPs) (LeMaster *et al.*, 2015). Genetic variation of the gene *Fkbp5* is considered to be associated with some diseases of glucocorticoid abnormallities, including post-traumatic stress disorder and mood disorders (Willour *et al.*, 2009). Fkbp5 acts as a crucial determinant of the adaptive stress response and decreases the binding of cortisol to its receptor (Tatro *et al.*, 2009).

MATERIALS AND METHODS

Animals, treatment and blood samples: All animal procedures were performed according to the guidelines of the Nanjing Agricultural University Animal Care and Ethics Committee. The experimental and control groups consisted of four Suhuai sows each. They were all agematched and had similar body weights at the time of weaning. Starting from the day after weaning, each animal was administered ACTH (1 IU/Kg) intravenously (IV) thrice a day for 7 days and the control group received saline. Blood samples were collected 2 h after ACTH injection. Each time, animals were gently restrained on their backs to minimize stress due to handling. Blood samples were collected in heparinized tubes and centrifuged for 10 min at $1500 \times g$. Plasma was separated and frozen at -20°C until further analysis.

Measurements of oxidant and antioxidant indices in plasma: The levels of MDA and GSH, and activities of SOD, CAT, GSH-Px, and T-AOC in plasma were determined using commercial analysis kits (Nanjing Jiancheng Bioengineering Institute, China) according to the manufacturer's instructions. Plasma SOD, CAT, GSH-Px, and T-AOC activities were expressed in U/mL, and MDA and GSH concentrations were expressed in nM and μ M, respectively.

RNA extraction and Quantitative real-time PCR (**qRT-PCR**): Total blood RNA was isolated using a blood RNA extraction kit (Nanjing Jiancheng Bioengineering Institute, China) according to manufacturer's instructions and reverse transcription was conducted using Prime Script RT Master Mix Kit (Takara, China). Quantitative real-time PCR was performed with AceQ qPCR SYBR Green Master Mix (Vazyme, China) in a reaction volume of 20 µl. The cycling parameter is as follows: 95°C for 5 min followed by 40 amplification cycles each comprising of 95°C for 10 s and 60°C for 30 s. Primer sequences are listed in Table 1. *GAPDH* served as an internal control and was used to normalize the relative expression level of gene in each sample. Gene expression levels were calculated according to $\Delta\Delta$ Ct method.

DNA bisulfite treatment and Pyrosequencing: Blood genomic DNA was isolated using standard phenolchloroform method. Subsequently, 500 ng of each blood DNA sample was treated by bisulfite and purified with DNA purification Kit (QIAGEN, Germany). PCR was performed with 2 µl of bisulfite-treated DNA. 1 µl each of forward and reverse primers, 1 μ l of dNTP, 10 μ l of 5 \times buffer and 34.8 µl of H₂O. PCR amplification parameters consisted of 3 min at 95°C, followed by 40 cycles of 30 s at 94°C, 30 s at 52°C and 1 min at 72°C. The PCR products were used to perform pyrosequencing using PyroMark Q96 ID system (QIAGEN, Germany). Pyro Q-CpG software (OIAGEN, Germany) was used to quantify the methylation level of each CpG site. The primer sequences used for PCR and pyrosequencing are as follows: forward primer: 5'-GTTTTTTGGTTTTTGTATT TTAGTTTTG-3'; reverse primer: 5'-AACACCCTATTC TAAATATAACTAACAC-3'; sequencing primer: 5'-**CCTAT TCTAAATATA ACTAACACAT-3'.**

Statistical analysis: Statistical analysis was conducted with SPSS v20.0 software (SPSS Inc., Chicago, USA). Student's *t*-test was used to analyze differences between two groups. All results are presented as mean \pm SEM. P<0.05 was considered statistically significant.

RESULTS

Effect of ACTH on the oxidant levels and activity of antioxidant enzymes in plasma: In order to determine whether ACTH induces oxidative stress, we examined oxidant indicators such as MDA, GSH, and T-AOC, and antioxidant enzymes such as SOD, CAT, and GSH-Px levels in the plasma sample of Suhuai pigs. Plasma levels of SOD, CAT, GSH-Px, MDA, GSH, and T-AOC did not change significantly on day 1 of ACTH treatment. As shown in Fig. 1A. SOD activity was decreased on days 4. 5, and 7 in ACTH treated group compared with control group. CAT activity declined in the treatment group with time and decreased significantly on days 3, 6, and 7 (Fig. 1B). The activity of GSH-Px significantly decreased on days 3, 4, and 6 after ACTH treatment (Fig. 1C). Plasma MDA concentration increased significantly in the treatment group on several days, whereas the concentrations on days 1, 4 and 7 were not significantly different from that of control group (Fig. 1D). GSH level in ACTH group significantly decreased compared with that in the control group on days 2, 6 and 7 (Fig. 1E). A significant decrease of T-AOC activity was observed on days 2, 4, 5, 6 and 7 in the ACTH-treatment group compared to the control group (Fig. 1F).

ACTH down-regulated the mRNA level of antioxidant enzyme genes: To further understand the effect of ACTH on the expression of antioxidant enzymes, the mRNA expression level of the antioxidant enzyme genes in the blood was investigated. Quantitative real-time PCR analysis showed that the mRNA levels of *SOD*, *CAT*, and *GPX* in the blood decreased significantly after treatment with ACTH (Fig. 2A-C).

ACTH activated the expression of glucocorticoidresponsive genes: Five genes, namely *CXCR4*, *DUSP1*, *IL7R*, *TXNIP*, and *Fkbp5*, have been proposed as markers of differential regulation of glucocorticoid-responsive elements (Donn *et al.*, 2007; Sautron *et al.*, 2015). In order to study whether ACTH activates GR-related pathways and affects downstream gene expression, we examined the mRNA levels of these genes. The results showed that *CXCR4*, *DUSP1*, *IL7R*, *TXNIP*, and *Fkbp5* mRNA levels were significantly increased upon ACTH treatment (Fig. 3A-E).

ACTH decreased the DNA methylation level in the intron 6 region of Fkbp: Lee et al. (2010) reported that corticosterone increases the expression of Fkbp5 and decreases the methylation level in intron 1 and 5 regions that contained GRE in mice. In the present study, we also used the website (http://alggen.lsi.upc.es/cgi-bin/promo_ v3/promo/promoinit.cgi?dirDB=TF_8.3) to predict GRE in Fkbp5 gene and found that a similar region contained GRE in intron 6 of pig Fkbp5 (Fig. 4A). To further investigate whether the intron 6 region of Fkbp6 undergoes demethylation after ACTH treatment, we used a pyrosequencing method to detect the methylation status in Fkbp5, which revealed that the methylation level of CpG2 site was significantly decreased in the ACTH treatment group compared with control group, while CpG1 site was not significantly different (Fig. 4B).

Fig. 1: Effect of ACTH injection for 7 days on contents of oxidant indictors in plasma. Sows were intravenously injected with ACTH (I IU/Kg) for 7 days. A, B, C, D, E and F) The effect of ACTH on SOD (U/mL), CAT (U/mL), GSH-Px (U/mL), MDA (nM), GSH (uM) and T-AOC (U/mL) in plasma, respectively. Data are expressed as the mean±SEM (n=4); **P<0.01; *P<0.05.

Fig. 2: Effect of ACTH injection on mRNA levels of oxidant enzyme genes in plasma. Relative expression levels of SOD (A), CAT (B) and GPX (C). The GAPDH gene is used to normalize these genes mRNA level. Data are expressed as the mean±SEM (n=4); *P<0.05.

Fig. 3: ACTH up-regulates expression of glucocorticoid-responsive sensitivity genes. Relative expression levels of CXCR4 (A), DUSP1 (B), IL7R (C), TXNIP (D), Fkbp5 (E). The GAPDH gene is used to normalize these genes mRNA level. Data are expressed as the mean \pm SEM (n=4); **P<0.01; *P<0.05.

403

Table I: Primers used in this study

Gene name	GenBank No.	Primer squence (5'-3')	Annealing temp (°C)	Product size (bp)
GAPDH	NM_001206359.1	F: GGTCGGAGTGAACGGATTT R: ATTTGATGTTGGCGGGAT	60	245
Fkbp5	NM_001315611.1	F: GAACCGTTTGTCTTTAGTC R: TTCGTTGGGATTTGAGTA	60	270
CXCR4	NM_213773.1	F: CCTGCCCTCCTGTTGACT R: CGATGCTGATCCCGATGT	60	298
DUSPI	NM_001256075.1	F: ACCACAAGGCGGACATCA R: TGCTCCTCCTCTGCTTCACA	60	198
IL7R	XM_013990620.1	F: CTGTCCCGATTTCTACTGCC R: TTTACTTTCCCTGCTGCCTC	60	286
TXNIP	NM_001044614.2	F: GCCCTATCTTTATGTATGCTCC R: CACAACATCTCACTGGCTGA	60	298
SOD	NM_214127.2	F: ACGGCGGCGGCTATGTCCTTG R: ACGGCAGGTCGGGGAGGGTGT	60	204
CAT	NM_214301.2	F: TGGGAATCCGATAGGAGACAA R: CGCCTTCGAGAATCTGGTAAT	60	199
GPX	NM_214407.1	F: GGCAAGACGGAGGTAAACTAC R: CTTTCATCCACTTCCACAGAG	60	226

GRE

Fig. 4: Analysis of DNA methylation level in the intron 6 regions of Fkbp5. A) Schematic representation of the analyzed methylation region in *Fkbp5* gene. Rectangles indicate the GR binding sequences. The bold "CG" indicates the CpG sites. Arrow indicates PCR and pyrosequencing primers. B) Percent methylation at two CpG positions is shown for *Fkbp5* intron 6 region. Each CpG site was assayed for both ACTH and control groups. Data are expressed as the mean \pm SEM (n=4); *P<0.05.

DISCUSSION

Superoxide is first dismutated by SOD to H₂O₂ and then catalyzed by two enzymes, CAT and GSH-Px, into H₂O and O₂ (Sun et al., 2014). Therefore, antioxidant systems play an important role in alleviating oxidative stress. It has been demonstrated earlier that administration of a certain dose of carbon disulfide (CS_2) significantly reduces GSH, SOD, CAT, and GSH-Px contents in the rat hippocampus (Wang et al., 2017). Moreover, early weaning in piglets disrupts oxidative balance and causes oxidative injury in piglets, resulting in decreased expression of CuZnSOD, MnSOD, GSH-Px1, and GPx4 (Yin et al., 2014). In the present study, SOD, CAT, GSH-Px, GSH, and T-AOC activity were significantly decreased after ACTH treatment. We further found that SOD, CAT, and GPX mRNA levels were also decreased in ACTH-induced group. These results suggest that elevated ACTH concentration in sows suppresses the antioxidant enzyme expression level, resulting in oxidative stress in Suhuai sow.

Increasing evidence suggests that ACTH affects ovulation, reduces estrogen secretion and delays onset of estrus and shortens the duration of estrus (Brandt *et al.*, 2006). Studies have shown that CAT and SOD activities are high in the human (Sugino *et al.*, 2000) and bovine (Rueda *et al.*, 1995) corpus luteum during early pregnancy. Furthermore, oxidative stress can lead to meiosis, fertilization and embryo development defects, and cause infertility (Keefe and Liu, 2009). Oxidative stress has been linked to endometriosis and polycystic ovarian syndrome (Menezo *et al.*, 2016). In our study, ACTH increased the oxidative damage and decreased the activity of oxidant enzymes. Hence, it is possible that excessive ACTH will induce oxidative stress and play a critical role during estrous cycle in the Suhuai sow.

Glucocorticoid production is induced by stress and it regulates gene expression by binding to its intracellular receptor (Hapgood et al., 2016). It has been demonstrated that glucocorticoids increase the transcription of DUSP1 gene by binding to GRE region in A549 human lung adenocarcinoma cells (Shipp et al., 2010). CXCR4, IL7R, and TXNIP genes were differentially expressed in response to ACTH in pigs (Sautron et al., 2015). Fkbp5 is identified as glucocorticoid-responsive genes and is regulated by the binding GR to the sequences corresponding to the GRE in Fkbp5 gene region (U et al., 2004). In the present study, we demonstrated that mRNA expression level of CXCR4, DUSP1, IL7R, TXNIP, and Fkbp5 were increased after ACTH treatment, which are consistent with previous study. These results showed that ACTH promoted transcription of glucocorticoid sensitive genes.

Fkbp5 protein acts an important co-chaperone in the formation of GR-complex (LeMaster *et al.*, 2015). When Fkbp5 binds to GR-complex, the formation of GR-complex has a lower affinity for glucocorticoid (Wochnik *et al.*, 2005). However, GR activation can promote the transcription of Fkbp5 via activation at GR elements (Kitraki *et al.*, 2015). Therefore, in response to stress, Fkbp5 can inhibit GR affinity for glucocorticoid via negative feedback. It has been shown that the DNA methylation of GRE region is decreased after treatment with corticosterone in mice hypothalamus and

Conclusions: In summary, ACTH treatment induces oxidative stress in Suhuai sow and increases the expression of glucocorticoid-responsive genes. ACTH also regulates Fkbp5 expression via demethylation in the GRE region. Hence, this study provides novel insights into the regulatory mechanisms between glucocorticoids and oxidative stress in Suhuai sow.

Acknowledgements: We thank Richard S. Lee (Johns Hopkins School of Medicine, Baltimore, MD 21287, USA) for helping to analyze the GRE of *Fkbp5* gene. This project was supported by the 973 Program (2014CB 138502), the National Natural Science Foundation of China (31472073), the State Key Program of National Natural Science Foundation of China (31630072), the National Natural Science Foundation of China (315019 20) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Authors contribution: QW carried out the study and drafted the manuscript. BL and ZL helped to perform the study. KL analyzed the data. WW and HL designed the study and revised the manuscript. All authors interpreted the data, critically revised the manuscript for important intellectual contents and approved the final version.

REFERENCES

- Agarwal A, Aponte-Mellado A, Premkumar BJ, et al., 2012. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10:49.
- Agarwal A, Gupta S, Sekhon L, et al., 2008. Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal 10:1375-403.
- Basini G, Simona B, Santini SE, et al., 2008. Reactive oxygen species and anti-oxidant defences in swine follicular fluids. Reprod Fertil Dev 20:269-74.
- Brandt Y, Lang A, Madej A, *et al.*, 2006. Impact of ACTH administration on the oviductal sperm reservoir in sows: the local endocrine environment and distribution of spermatozoa. Anim Reprod Sci 92:107-22.
- de Quervain D, Schwabe L and Roozendaal B, 2016. Stress, glucocorticoids and memory: implications for treating fear-related disorders. Nat Rev Neurosci 18:7-19.
- Donn R, Berry A, Stevens A, et al., 2007. Use of gene expression profiling to identify a novel glucocorticoid sensitivity determining gene, BMPRII. Faseb J 21:402-14.
- Hapgood JP, Avenant C and Moliki JM, 2016. Glucocorticoid-independent modulation of GR activity: Implications for immunotherapy. Pharmacol Ther 165:93-113.
- Keefe DL and Liu L, 2009. Telomeres and reproductive aging. Reprod

Fertil Dev 21:10-4.

- Kirschke E, Goswami D, Southworth D, et al., 2014. Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell 157:1685-97.
- Kitraki E, Nalvarte I, Alavian-Ghavanini A, et al., 2015. Developmental exposure to bisphenol A alters expression and DNA methylation of Fkbp5, an important regulator of the stress response. Mol Cell Endocrinol 417:191-9.
- Klengel T, Mehta D, Anacker C, et al., 2013. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 16:33-41.
- Lee RS, Tamashiro KL, Yang X, et al., 2010. Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology 151:4332-43.
- LeMaster DM, Mustafi SM, Brecher M, et al., 2015. Coupling of Conformational Transitions in the N-terminal Domain of the 51kDa FK506-binding Protein (FKBP51) Near Its Site of Interaction with the Steroid Receptor Proteins. | Biol Chem 290:15746-57.
- Menezo YJ, Silvestris E, Dale B, et al., 2016. Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reprod Biomed Online 33:668-83.
- Min Y, Sun T, Niu Z, et al., 2016. Vitamin C and vitamin E supplementation alleviates oxidative stress induced by dexamethasone and improves fertility of breeder roosters. Anim Reprod Sci 171:1-6.
- Newsholme P, Cruzat VF, Keane KN, et al., 2016. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochemical J 473:4527-50.
- Rueda BR, Tilly KI, Hansen TR, et al., 1995. Expression of superoxide dismutase, catalase and glutathione peroxidase in the bovine corpus luteum: evidence supporting a role for oxidative stress in luteolysis. Endocrine 3:227-32.
- Sautron V, Terenina E, Gress L, et al., 2015. Time course of the response to ACTH in pig: biological and transcriptomic study. BMC Genomics 16:961.
- Shipp LE, Lee JV, Yu CY, et al., 2010. Transcriptional regulation of human dual specificity protein phosphatase I (DUSPI) gene by glucocorticoids. PLoS One 5:e13754.
- Spencer RL and Deak T, 2017. A users guide to HPA axis research. Physiol Behav 178:43-65.
- Spiers JG, Chen HJ, Sernia C, et al., 2014. Activation of the hypothalamicpituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci 8:456.
- Srinivasan M and Lahiri DK, 2016. Glucocorticoid-Induced Leucine Zipper in Central Nervous System Health and Disease. Mol Neurobiol 54:8063-70
- Sugino N, Takiguchi S, Kashida S, et al., 2000. Superoxide dismutase expression in the human corpus luteum during the menstrual cycle and in early pregnancy. Mol Hum Reprod 6:19-25.
- Sun X, Zhong Y, Huang Z et al., 2014. Selenium accumulation in unicellular green alga Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments. PLoS One 9:e112270.
- Tatro ET, Everall IP, Kaul M *et al.*, 2009. Modulation of glucocorticoid receptor nuclear translocation in neurons by immunophilins FKBP51 and FKBP52: implications for major depressive disorder. Brain Res 1286:1-12.
- UM, Shen L, Oshida T, et al., 2004. Identification of novel direct transcriptional targets of glucocorticoid receptor. Leukemia 18:1850-6.
- Wang S, Irving G, Jiang L, et al., 2017. Oxidative stress mediated hippocampal neuron apoptosis participated in Carbon disulfideinduced rats cognitive dysfunction. Neurochem Res 42:583-94.
- Willour VL, Chen H, Toolan J, et al., 2009. Family-based association of FKBP5 in bipolar disorder. Mol Psychiat 14:261-8.
- Wochnik GM, Ruegg J, Abel G A, et al., 2005. FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem 280:4609-16.
- Yin J, Wu MM, Xiao H, et al., 2014. Development of an antioxidant system after early weaning in piglets. J Anim Sci 92:612-9.