Evaluation of Immunogenicity and Protective Efficacy of Eimeria maxima Immune Mapped Protein 1 with EDA Adjuvant in Chicken

Xiaolin Lin1, Muhammad Mohsin2,1,3, Rao Zahid Abbas2, Lina Li1, Huan Chen1, Chunfang Huang1, Yuankai Li1, Mohsan Ullah Goraya2, Zhijian Huang1* and Guangwen Yin1*

1Engineering Laboratory of Animal Pharmaceuticals and College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China; 2College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China; 3Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
*Corresponding author: hzjfacu@163.com; yinguangwen000@sina.com

ARTICLE HISTORY
Received: December 15, 2018
Revised: December 12, 2019
Accepted: May 03, 2020
Published online: May 06, 2020

Key words:
Coccidiosis
Immunization
Infection
Molecular adjuvant
Poultry
Subunit vaccines

ABSTRACT

Imune mapped protein-1 (IMP1) has been shown as a protective protein associated with Eimeria (E.) maxima and cellular fibronectin extra domain A (EDA), the ligand of toll-like receptor 4 (TLR4), has the potential to be used as molecular adjuvant of the vaccine. In the present study, we estimated the protective efficacy of a subunit vaccine comprising of EDA and EmIMP1 against E. maxima challenges. For this purpose, the fusion protein EmIMP1-EDA was thoroughly purified by using over-expression of replicated E. coli of the protein. Chickens were immunized by the EmIMP1 vaccine having Freund’s adjuvant or with the EmIMP1-EDA vaccine without adjuvant. The immunization of chicken by the EmIMP1-EDA vaccine produced stronger IFN-γ secretion as compared to that in other groups (P<0.05). The result of the EmIMP1-EDA vaccine was more pronounced on the parameters including weight gain, oocyst shedding, and lesion scores as compared to the EmIMP1 vaccine employing Freund’s adjuvant, but there were no statistical differences between the two groups (P>0.05). These results showed that EmIMP1-EDA fusion protein could be used as a potent subunit vaccine against E. maxima infection.

INTRODUCTION

Infectious diseases have been a continuous threat in poultry production systems (Naqvi et al., 2017; Rehman et al., 2018; Siddique et al., 2020; Zhang et al., 2020). Among parasitic diseases, coccidiosis is an important disease of poultry having great economic importance (Khater et al., 2020). According to an estimate, this disease causes losses of more than three billion dollars every year (Blake and Tomley, 2014). Various factors like the intensity of infection, site of infection, age of the bird, farm management and disease incidence at a particular farm are responsible for its sever mortality and morbidity (Bachaya et al., 2015). The usage of anticoxidial drugs in feed or drinking water has been normally practicing against chicken coccidiosis in various parts of the world, however, due to the emergence of drug resistance (Abbas et al., 2008, 2011), alternate approaches are being sought for the control of various infectious diseases including coccidiosis (Hussain et al., 2017; Abbas et al., 2017a, 2017b, 2017c, 2019a, 2019b; Mahmood et al., 2018). One of these alternates is the use of essential oils which are helpful in maintaining vital physiological functions (Idris et al., 2017; Abbas et al., 2018, Khater et al., 2018; Ahmad et al., 2019; Fayaz et al., 2019) but consumption of these oils has been reported for causing cell membrane damage in laboratory animals.

Vaccination against coccidiosis, including adjuvant based vaccine, is an appropriate appealing approach against chicken coccidiosis (Chen et al., 2015). Currently, vaccines containing live attenuated (Paracox®, Livacox®) or virulent oocysts (Coccivac®, Immucox®) are available in the market. High cost and of these types of vaccine is a significant reason or their failure in the market. Live oocyst vaccines have some drawbacks including the pathogenicity of virulent oocysts, high cost, low

§These authors contributed equally to this work.
production, and virulence reversibility of live attenuated vaccines. So, it is urged to develop new vaccines for use in the market (Chapman et al., 2002).

Immune mapped protein-1 (IMP-1) is a well-established immunogenic protein and it confers good immunity against infection with *E. maxima* in chickens (Jenkins et al., 2015). Various experiments have shown that cellular fibronectin (FN) extra domain A (EDA) is responsible for activating the TLR4 signalling pathway, and the other portion of FN has no role in this action (Okamura et al., 2001). Hence this property of the protein makes it an appropriate candidate as an adjuvant by targeting specific antigen to the dendritic cells (DCs) by TLR4. The interactions of the EDA-TLR4 can activate antigen-presenting cells (APCs), upregulate various co-stimulatory molecules, and also can influence multiple functions mediated by T-cells (Mansilla et al., 2012). This T cell-mediated immune response has shown to be an imperative element of protection against *Eimeria* spp. (Lillehoj et al., 2004).

Based on these reported facts, it is believed that EDA can boost the immunogenic worth of IMP-1 and, hence it can improve the immunity of birds against *Eimeria* spp. Therefore, this research has been planned to examine the adjuvant property of EDA for EmIMP1 target protein and also to analyze the defensive importance of EmIMP1-EDA fusion protein as a vaccine.

MATERIALS AND METHODS

Chickens and Parasites: 150 Day-old chicks were obtained from Fuzhou China. They were reared in clean brooder cages and given feed and water ad libitum. To collect oocysts, *E. maxima* oocysts were given to 14-day-old chicks orally (10⁴ oocysts per bird). Post infection period of 6 to 9 days, the oocysts were isolated and cleaned from faeces of chickens by saturated NaCl solution floatation method and then sporulated in 2.5% potassium dichromate solution at 27°C in a shaker with a speed of 140 rpm for 48 h (Yin et al., 2015).

Cloning of EDA and EmIMP1 gene: Chicken EDA was obtained from Sangon Biotech Company. The EmIMP1 was amplified from the total RNA of *E. maxima* by RT-PCR by utilizing the EmIMP1 specific primers of EmIMP1-f (5\' - GAATTCATGGGGCCGCTTGCAGGA AATC-3\') and EmIMP1-r (5\' - CTGAGATCTTTGCGAC ACTTTAGTGGG-3\'). For sequencing purposes, gene extraction, purification, and cloning were done by pEASY-Blunt Simple Cloning Vector [TransGen Biotech, Beijing, China (Yin et al., 2015)].

Expression and purification of recombinant proteins: Chicken EDA fragment was amplified by PCR using the following forward (EDA-f) and reverse primers (EDA-r): 5\'-CATATGGAATTTGATCGCCCTAAAGGAC-3' and 5\' - GAATTCGTTGGACCTGTTCTCAAA TCGGG -3'. The introduction of EmIMP1 constructed the pET-28a-EmIMP1 into XhoI and EcoRI digested expression vector pET-28a. Then EDA was introduced into a pET-28a-EmIMP1 vector to generate pET-28a-EDA-EmIMP1. The transformed *E. coli (BL21)* were grown in the LB medium (Luria-Bertani) containing tryptone and yeast extract as the main component overnight to mid-log phase, induced with 1.0 mM of IPTG for 6 h at 37°C. Then, a collection was done by centrifugation and sonication was done on ice for its disruption. For purification of EmIMP1-EDA protein and Em IMP1 protein, Hi Trap metal chelating column was used. In the end, protein expression and purification were checked by using SDS-PAGE and western blotting techniques.

Immunization and parasitic infection: Two-week-old male chickens were selected and grouped randomly into 7 groups (n=20). Group 1 and 2 were immunized intramuscularly with 200µg of EmIMP1 protein emulsified in Freund’s complete adjuvant (FCA) and 200µg of EmIMP1-EDA protein without adjuvant, respectively (Table 1). Group 3 and 4 were treated with PBS and kept as infected and non-infected control groups. 200µg of EDA vaccinated group 5, while group 6 was treated with 200µl of FCA; both group 5 and 6 were kept as adjuvant control groups. Last group 7 was treated with 200µg of EmIMP1 as a control group. After 14 days the same protocol was repeated. At 14 day, infection of *Eimeria maxima* virulent oocysts was given to all groups except group 4 with a concentration of 1x10⁷ oocysts. After this, blood samples were collected and serum was separated and stored at -20°C for further experiment. After 6 to 9 days of infection, body weight and oocyst shedding were determined by the method described by Sun et al. (2014) while the intestinal lesion score was checked by the method described by Johnson (1970).

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of chickens</th>
<th>Immunization dose (µg)</th>
<th>Immunization time (day)</th>
<th>Challenge time (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EmIMP1-EDA</td>
<td>20</td>
<td>200</td>
<td>14, 28</td>
<td>42</td>
</tr>
<tr>
<td>PBS-unchallenged</td>
<td>20</td>
<td>200</td>
<td>14, 28</td>
<td>42</td>
</tr>
<tr>
<td>PBS-challenged</td>
<td>20</td>
<td>200</td>
<td>14, 28</td>
<td>42</td>
</tr>
<tr>
<td>FCA</td>
<td>20</td>
<td>200µl</td>
<td>14, 28</td>
<td>42</td>
</tr>
<tr>
<td>EmIMP1</td>
<td>20</td>
<td>200</td>
<td>14, 28</td>
<td>42</td>
</tr>
</tbody>
</table>

Anti-EmIMP1 antibodies and IFN-γ detection: ELISA assay was used to detect the chicken immunoglobulin G (IgG) by the method described by Yin et al. (2015). ELISPOT assay was used to check the concentration of IFN-γ in chickens received infection by the method described by Li et al. (2015).

Statistical analysis: Statistical analysis was performed by using the ANOVA technique and Tukey’s HSD test using a statistical software program [SPSS13.0 Data Editor software, SPSS Inc., Chicago, IL (Yin et al., 2015)].

RESULTS

Protein expression: The target 1131 bp cDNA fragment of EmIMP1 was obtained from *Eimeria maxima* total RNA by RT-PCR. After sequencing; it was observed that the cDNA sequence shows 100% similarity against EmIMP1 of Weybridge strain of *E. maxima*. For proteomic analysis, SDS-PAGE showed 70kDa and 80kDa protein bands by staining with Coomassie brilliant blue stain (Fig.1A). Mouse anti-His-6 antibody technique can be used for the identification of these proteins. (Fig. 1B).
Table 2: Protective effects of EmIMP1 and EDA-EmIMP1 against challenges of E. maxima in chickens

<table>
<thead>
<tr>
<th>Group</th>
<th>Average body weight gain (g)</th>
<th>Relative body weight gain (%)</th>
<th>Oocyst shedding per bird (×10^4)</th>
<th>Oocyst decrease ratio (%)</th>
<th>Lesion score</th>
</tr>
</thead>
<tbody>
<tr>
<td>EmIMP1-FCA</td>
<td>50.82±10.08 ^a</td>
<td>93.69</td>
<td>4.86±0.40 ^a</td>
<td>55.41</td>
<td>1.5±0.4 ^a</td>
</tr>
<tr>
<td>EmIMP1-EDA</td>
<td>52.56±10.37 ^a</td>
<td>96.90</td>
<td>4.29±0.17 ^a</td>
<td>60.64</td>
<td>1.3±0.2 ^a</td>
</tr>
<tr>
<td>PBS-unchallenged</td>
<td>54.24±7.09 ^b</td>
<td>100</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>PBS-challenged</td>
<td>40.77±12.66 ^c</td>
<td>75.17</td>
<td>10.90±0.23 ^d</td>
<td>0</td>
<td>3.3±0.2 ^e</td>
</tr>
<tr>
<td>EDA</td>
<td>42.50±10.35 ^c</td>
<td>78.40</td>
<td>9.80±0.13 ^c</td>
<td>10.09</td>
<td>3.3±0.2 ^e</td>
</tr>
<tr>
<td>FCA</td>
<td>41.83±9.56 ^d</td>
<td>77.12</td>
<td>10.50±0.35 ^e</td>
<td>3.67</td>
<td>3.2±0.4 ^f</td>
</tr>
<tr>
<td>EmIMP1</td>
<td>41.55±11.20 ^c</td>
<td>76.60</td>
<td>10.20±0.24 ^d</td>
<td>6.42</td>
<td>3.4±0.3 ^g</td>
</tr>
</tbody>
</table>

Note: Values are expressed as mean ± SD. Means in the same column with different letters were significantly different between the groups (P<0.05).

Antibodies and cellular immune response against recombinant EmIMP1 and EmIMP1-EDA in chickens: After 2 weeks, EmIMP1-FCA and EmIMP1-EDA vaccinated groups show a higher concentration of IgG specific to EmIMP1 as compared to control groups (P<0.05). However, EmIMP1-FCA vaccinated chicken group shows a higher percentage of IgG as compared to the EmIMP1-EDA vaccinated group with no significant difference was detected. FCA, EDA and EmIMP1 treated groups showed no significant difference than the control groups treated with PBS (Fig. 2). EmIMP1-EDA immunized chickens showed a higher number of IFN-γ-producing cells (70 spots/10^6 cells) that play a role in enhancing the immunity as compared to EmIMP1-FCA group and control groups (12 spots/10^6 cells) (P<0.05) (Fig. 3).

Fig. 1: EmIMP1 and EmIMP1-EDA expression. (A) Use of SDS-PAGE for purification of proteins EmIMP1, EmIMP1-EDA and Coomassie brilliant blue for their mark. (B) EmIMP1, EmIMP1-EDA proteins were established using western blotting method.

DISCUSSION

For vaccination experiments, FCA is a commonly used adjuvant especially for animals (Grzywa et al., 2015) that results in higher immune response in the form of producing higher specific antibodies because of immune stimulant nature (Still, 2005). Except for these benefits, it is toxic and hard to deal (Fodey et al., 2008). However, several studies were conducted to detect non-toxic adjuvant that can be used as a replacer of FCA (Huijbers et al., 2012). The current study revealed that EDA showed better results and less toxic effects as compared to FCA. The FCA introduced granulomas and distress in chickens was not detected in the case of EDA adjuvant and EDA showed similar immune responses (Table 2).

Role of EmIMP1-EDA protein immunization against E. maxima: Among chicken groups that were immunized with EmIMP1-FCA or EmIMP1-EDA proteins showed significantly better results for weight gain, decrease oocyst count in faeces and a less intestinal score of lesions as compared to all other groups (P<0.05). However, no significant differences were observed among the EmIMP1-FCA and EmIMP1-EDA groups and the control groups as well (Table 2).

Fig. 3: EmIMP1-EDA protein encourages effective EmIMP1 specific T-cell responses. The Utilization of IFN-γ ELISPOT assay for checking its response. ELISPOT values indicate the quantity of antigen-specific IFN-γ positive spots per 10^6 PBMCs succeeding inspiration through the EmIMP1 protein. Bars (mean ± SE, n=6) denoted with different letters are significantly different by the Tukey’s HSD test (P<0.05).
having a size of 10 kDa and better combination ability with antigen. Except for these characteristics, the fusion protein can be easily injected, purified and stored. Hence, EDA could be a better alternative to FCA in producing immunity against parasitic antigens.

EDA reported in many studies used as an adjuvant and can increase the immune response against HIV-1 (San Roman et al., 2012). EDA can also be used as a specific treatment showing anti-viral, anti-cancer, anti-tumour properties (Lasarte et al., 2007) and also against infectious diseases (Arribillaga et al., 2013). Furthermore, it can also be used to treat cervical carcinoma by interacting with HPVE7. However, further study is required to check the effect of EDA in chickens by combining with the TLR4 receptor of chicken cells.

The present study concluded that EmIMP1-EDA decreases 60.64% oocyst count showing higher efficacy than EmIMP1 that was emulsified in FCA. Efficacy of the EmIMP1-EDA vaccine is consistent with other studies using recombinant CD40L as a vaccine adjuvant in a chicken vaccine (Yin et al., 2015). However, the immunoglobulin level of IgG specific to EmIMP1-EDA was noted the same as in the case of the EmIMP1-FCA treated group. Serum IgG antibodies level indicates the protective immune response against parasite antigen (Guzman et al., 2003). Chickens vaccinated by EmIMP1-EDA showed stimulated peculiar cell responses such as more IFN-γ production by PBMCs cells in reaction to EmIMP1 stimulus. In our results, the IgG level was the same in both vaccine candidates when the IFN-γ level was significantly different. The reason is that, as a molecular adjuvant, chicken EDA may be an inducer of innate immune effectors such as cytokines, thereby stimulating the activation of adaptive immune responses, chicken EDA could elicit the IgG response and T-cell response. Meanwhile, FCA mainly enhances antibody IgG responses. Prospective, EDA, fused to EmIMP1 protein, may increase the uptake ability and processing of EmIMP1 by antigen-presenting cells, hence causing stimulation of chicken adaptive immune system responses in affective mode.

Conclusions: In the end, our results demonstrate the possibility of producing two efficacious vaccine candidates against E. maxima infection using EmIMP1 with FCA or EDA. This experiment verified by reasonable decline values in the oocysts shedding in chickens infected with E. maxima. Hence, the usage of EmIMP1-EDA fusion protein acts as a powerful immunogenic in the improvement of subunit vaccines against the E. maxima infection.

Acknowledgments: This research was supported by the National Natural Science Foundation of China (31872466), Discipline Development Grant from College of Animal Sciences FAFU (2018DK004), and Project of Fujian Science and Technology Department (2019N0005).

Authors contribution: GWY and ZJH designed and supervised the research. XLL, LNL, HC, CFH, YKL experimented and analyzed the data. MM wrote this paper, RZA and MUG polished the article.

REFERENCES

